(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:slecture]]
+
<br>
[[Category:ECE438Fall2014Boutin]]
+
<center><font size="4"></font>
[[Category:ECE]]
+
<font size="4">'''Discrete-time Fourier Transform with Example''' </font>
[[Category:ECE438]]
+
[[Category:signal processing]] 
+
  
<center><font size= 4>
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Jacob Holtman
'''Discrete-time Fourier transform'''
+
</font size>
+
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Jacob Holtman
+
Partly based on the [[2014 Fall ECE 438 Boutin|ECE438 Fall 2014 lecture]] material of [[User:Mboutin|Prof. Mireille Boutin]].  
 
+
</center>  
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
+
</center>
+
 
----
 
----
 +
 
----
 
----
==Definition of Discrete Time Fourier Transform (DTFT)==
 
<math>X(\omega)  := \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} </math>
 
  
==Definition of Inverse Discrete Time Fourier Transform (iDTFT)==
+
== Definition of Discrete Time Fourier Transform (DTFT)  ==
<math>x[n] = \frac{1}{2\pi}\int\limits_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega </math>
+
 
 +
<math>X(\omega) = \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} </math>
 +
 
 +
 
 +
== Definition of Inverse Discrete Time Fourier Transform (iDTFT) ==
 +
 
 +
<math>x[n] = \frac{1}{2\pi}\int\limits_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega </math>  
  
 
----
 
----
<math>X(\omega) </math> is seen to be periodic with a period of <math>2\pi</math> to see this <math>\omega</math> is replaced with <math>\omega + 2k\pi</math> where k is an integer
 
  
<math>X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j({\color{blue}\omega + 2k\pi})n} </math>
+
<span class="texhtml">''X''(ω)</span> is seen to be periodic with a period of <span class="texhtml">2π</span> to see this <span class="texhtml">ω</span> is replaced with <span class="texhtml">ω + 2''k''π</span> where k is an integer
  
Using the multiplicative rule of exponential the <math>\omega</math> and <math>2k\pi</math> are split into two different exponential 
+
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]e^{-j({\color{blue}\omega + 2k\pi})n} </math>  
  
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]{\color{red}e^{-j\omega n}}{\color{blue}e^{2k\pi n}} </math>
+
Using the multiplicative rule of exponential the <span class="texhtml">ω</span> and <span class="texhtml">2''k''π</span> are split into two different exponential
  
given that n and k are integers k and so <math>e^{-j2k\pi n} = 1  </math> for all k, from Euler's identity and so
+
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]{\color{red}e^{-j\omega n}}{\color{blue}e^{2k\pi n}} </math>  
  
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = X(\omega) </math>
+
given that n and k are integers k and so <span class="texhtml">''e''<sup> − ''j''2''k''π''n''</sup> = 1</span> for all k, from Euler's identity and so
 +
 
 +
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = X(\omega) </math>
 +
 
 +
so <span class="texhtml">''X''(ω + 2''k''π) = ''X''(ω)</span> for all <span class="texhtml">ω</span>  
  
so <math>X(\omega + 2k\pi) = X(\omega) </math> for all <math>\omega</math>
 
 
----
 
----
 +
 
to find the DTFT of a complex exponential  
 
to find the DTFT of a complex exponential  
  
<math>x[n] = e^{j\omega_0 n} </math>
+
<math>x[n] = e^{j\omega_0 n} </math>  
  
The first step is to replace x[n] with the exponential in the DTFT equation
+
The first step is to replace x[n] with the exponential in the DTFT equation  
  
<math>X(\omega)  = \sum_{n=-\infty}^{\infty}{\color{blue}e^{j\omega_0 n}}e^{-j\omega n} </math>
+
<math>X(\omega)  = \sum_{n=-\infty}^{\infty}{\color{blue}e^{j\omega_0 n}}e^{-j\omega n} </math>  
  
if <math>\omega</math> = <math>\omega_0</math> then the exponential is always 1 and the sum is divergent.
+
if <span class="texhtml">ω</span> = <span class="texhtml">ω<sub>0</sub></span> then the exponential is always 1 and the sum is divergent.  
  
instead of finding the DTFT of a complex exponential it is easier to make an educated guess for what <math>X(\omega)</math> is and checking to see if the equation holds and the initial guess is  
+
instead of finding the DTFT of a complex exponential it is easier to make an educated guess for what <span class="texhtml">''X''(ω)</span> is and checking to see if the equation holds and the initial guess is  
  
<math>2\pi\delta(\omega-\omega_0)</math>
+
<span class="texhtml">2πδ(ω − ω<sub>0</sub>)</span>  
  
given that <math>\omega</math> is periodic, as seen above, <math>\omega</math> is between 0 and <math>2\pi</math>
+
given that <span class="texhtml">ω</span> is periodic, as seen above, <span class="texhtml">ω</span> is between 0 and <span class="texhtml"></span>  
  
in the iDTFT the replacement looks like
+
in the iDTFT the replacement looks like  
  
<math>\frac{1}{2\pi}\int\limits_{-\pi}^{\pi} {\color{blue}2\pi\delta(\omega-\omega_0)}e^{j\omega n}d\omega </math>
+
<math>\frac{1}{2\pi}\int\limits_{-\pi}^{\pi} {\color{blue}2\pi\delta(\omega-\omega_0)}e^{j\omega n}d\omega </math>  
  
Because integration is a sum of infinitely small parts and delta functions are only equal to 1 at a distinct value the integration becomes the value of the equation at the delta offset point which is <math>\omega = \omega_0</math> so
+
Because integration is a sum of infinitely small parts and delta functions are only equal to 1 at a distinct value the integration becomes the value of the equation at the delta offset point which is <span class="texhtml">ω = ω<sub>0</sub></span> so  
  
<math>x[n] = {color{red}\frac{1}{2\pi}2\pi\delta(\omega_0}-\omega_0)}e^{j\omega_0 n} </math>
+
<math>x[n] = {\color{red}\frac{1}{2\pi}2\pi\delta(\omega_0-\omega_0)}e^{j\omega_0 n} </math>  
  
 
which simplifies to  
 
which simplifies to  
  
<math>x[n] = e^{j\omega_0 n}</math>
+
<math>x[n] = e^{j\omega_0 n}</math>  
 +
 
 +
since the iDTFT reproduces the DTFT then the DTFT of x[n] is <span class="texhtml">2πδ(ω − ω<sub>0</sub>)</span>
 +
 
 
----
 
----
 +
 
----
 
----
 +
 
----
 
----
(create a question page and put a link below)
+
== [[Holtman_Slecture_Review|Questions and comments]] ==
==[[slecture_title_of_slecture_review|Questions and comments]]==
+
 
 +
If you have any questions, comments, etc. please post them on [[Holtman_Slecture_Review|this page]].
  
If you have any questions, comments, etc. please post them on [[slecture_title_of_slecture_review|this page]].
 
 
----
 
----
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
+
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]
 +
 
 +
[[Category:Slecture]] [[Category:ECE438Fall2014Boutin]] [[Category:ECE]] [[Category:ECE438]] [[Category:Signal_processing]] [[Category:Discrete-time_Fourier_transform]]

Latest revision as of 20:02, 16 March 2015


Discrete-time Fourier Transform with Example

A slecture by ECE student Jacob Holtman

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



Definition of Discrete Time Fourier Transform (DTFT)

$ X(\omega) = \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} $


Definition of Inverse Discrete Time Fourier Transform (iDTFT)

$ x[n] = \frac{1}{2\pi}\int\limits_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega $


X(ω) is seen to be periodic with a period of to see this ω is replaced with ω + 2kπ where k is an integer

$ X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j({\color{blue}\omega + 2k\pi})n} $

Using the multiplicative rule of exponential the ω and 2kπ are split into two different exponential

$ X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty}x[n]{\color{red}e^{-j\omega n}}{\color{blue}e^{2k\pi n}} $

given that n and k are integers k and so ej2kπn = 1 for all k, from Euler's identity and so

$ X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = X(\omega) $

so X(ω + 2kπ) = X(ω) for all ω


to find the DTFT of a complex exponential

$ x[n] = e^{j\omega_0 n} $

The first step is to replace x[n] with the exponential in the DTFT equation

$ X(\omega) = \sum_{n=-\infty}^{\infty}{\color{blue}e^{j\omega_0 n}}e^{-j\omega n} $

if ω = ω0 then the exponential is always 1 and the sum is divergent.

instead of finding the DTFT of a complex exponential it is easier to make an educated guess for what X(ω) is and checking to see if the equation holds and the initial guess is

2πδ(ω − ω0)

given that ω is periodic, as seen above, ω is between 0 and

in the iDTFT the replacement looks like

$ \frac{1}{2\pi}\int\limits_{-\pi}^{\pi} {\color{blue}2\pi\delta(\omega-\omega_0)}e^{j\omega n}d\omega $

Because integration is a sum of infinitely small parts and delta functions are only equal to 1 at a distinct value the integration becomes the value of the equation at the delta offset point which is ω = ω0 so

$ x[n] = {\color{red}\frac{1}{2\pi}2\pi\delta(\omega_0-\omega_0)}e^{j\omega_0 n} $

which simplifies to

$ x[n] = e^{j\omega_0 n} $

since the iDTFT reproduces the DTFT then the DTFT of x[n] is 2πδ(ω − ω0)




Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438 slectures, Fall 2014

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang