Line 15: Line 15:
 
----
 
----
 
----
 
----
==Definition==
+
==Definition of Discrete Time Fourier Transform (DTFT)==
 
<math>X(\omega)  := \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} </math>
 
<math>X(\omega)  := \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} </math>
 +
 +
==Definition of Inverse Discrete Time Fourier Transform (iDTFT)==
 +
<math>x[n] = \frac{1}{2\pi}\int\limits_{0}^{\pi}X(\omega)e^{j\omegan}d\omega </math>
  
 
<math>X(\omega) </math> is seen to be periodic with a period of <math>2\pi</math> to see this <math>\omega</math> is replaced with <math>\omega + 2k\pi</math> where k is an integer
 
<math>X(\omega) </math> is seen to be periodic with a period of <math>2\pi</math> to see this <math>\omega</math> is replaced with <math>\omega + 2k\pi</math> where k is an integer
Line 31: Line 34:
  
 
so <math>X(\omega + 2\pi) = X(\omega) </math> for all <math>\omega</math>
 
so <math>X(\omega + 2\pi) = X(\omega) </math> for all <math>\omega</math>
 +
----
 +
 +
 +
 
----
 
----
 
----
 
----

Revision as of 19:58, 29 September 2014


Discrete-time Fourier transform

A slecture by ECE student Jacob Holtman

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



Definition of Discrete Time Fourier Transform (DTFT)

$ X(\omega) := \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} $

Definition of Inverse Discrete Time Fourier Transform (iDTFT)

$ x[n] = \frac{1}{2\pi}\int\limits_{0}^{\pi}X(\omega)e^{j\omegan}d\omega $

$ X(\omega) $ is seen to be periodic with a period of $ 2\pi $ to see this $ \omega $ is replaced with $ \omega + 2k\pi $ where k is an integer

$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega + 2k\pi)n} $

Using the multiplicative rule of exponential the $ \omega $ and $ 2k\pi $ are split into two different exponential

$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}e^{2k\pi n} $

given that n and k are integers k and so $ e^{-j2k\pi n} = 1 $ from Euler's identity and so

$ X(\omega + 2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $

so $ X(\omega + 2\pi) = X(\omega) $ for all $ \omega $






(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett