Line 1: Line 1:
[[Category:2013 Spring ECE 302 Boutin]][[Category:2013 Spring ECE 302 Boutin]][[Category:2013 Spring ECE 302 Boutin]]
+
<br>
  
=DeMorgans_Second_Law_ECE302S13Boutin=
+
= Alternative Proof for DeMorgan's Second Law  =
  
 +
By Oluwatola Adeola
  
 +
[https://www.projectrhea.org/rhea/index.php/ECE302 <font color="#0066cc">ECE 302,</font>] [https://www.projectrhea.org/rhea/index.php/List_of_Course_Wikis#2013 <font color="#0066cc">Spring 2013</font>], [https://www.projectrhea.org/rhea/index.php/User:Mboutin Professor Boutin]
  
Put your content here . . .
+
<br>
  
 +
During lecture, a proof of DeMorgan’s second law was given as a possible solution to the quiz which was based on showing that both sets are subsets of each other and are therefore equivalent. Here’s is an alternative method of proving the law that relies on determining a subset based on the exclusion of an element rather than inclusion.
  
 +
&nbsp;
  
 +
DeMorgan's Second Law:&nbsp; <math>{(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c</math>&nbsp;
  
[[ 2013 Spring ECE 302 Boutin|Back to 2013 Spring ECE 302 Boutin]]
+
Proof:
 +
 
 +
#If&nbsp;&nbsp; &nbsp;<math>x \notin {(\bigcap^{n}{S_n})}^{c}</math>
 +
#<math>\Rightarrow x \in {\bigcap^{n}{S_n}}</math>
 +
#<math>\Rightarrow \forall{n}, x \in {S_n}</math>&nbsp;
 +
#<math>\Rightarrow \forall{n}, x \notin {(S_n)}^{c}</math>
 +
#<math>\Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}}</math>
 +
#By lines 1 through&nbsp;5: <math>x \notin {(\bigcap^{n}{S_n})}^{c} \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}}</math>
 +
#By line 6; <math>{(\bigcap^{n}{S_n})}^{c} \subseteq \bigcup^{n}{(S_n)}^c</math>
 +
#If <math>x \notin {\bigcup^{n}{(S_n)}^{c}}</math>
 +
#<math>\Rightarrow \forall{n}, x \notin {(S_n)}^{c}</math>
 +
#<math>\Rightarrow \forall{n}, x \in {S_n}</math>
 +
#<math>\Rightarrow x \in {\bigcup^{n}{S_n}}</math>
 +
#<math>\Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c}</math>
 +
#By lines&nbsp;8 through 12:<math>x \notin {\bigcup^{n}{(S_n)}^{c}} \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c}</math>
 +
#By line 13:<math>{(\bigcap^{n}{S_n})}^{c} \supseteq \bigcup^{n}{(S_n)}^c</math>
 +
#By lines&nbsp;7 and 15 <math>{(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c</math><br>&nbsp;<span class="texhtml">&nbsp;</span>&nbsp;
 +
 
 +
<br>[[2013 Spring ECE 302 Boutin|Back to 2013 Spring ECE 302 Boutin]]
 +
 
 +
[[Category:2013_Spring_ECE_302_Boutin]]

Revision as of 17:55, 17 March 2013


Alternative Proof for DeMorgan's Second Law

By Oluwatola Adeola

ECE 302, Spring 2013, Professor Boutin


During lecture, a proof of DeMorgan’s second law was given as a possible solution to the quiz which was based on showing that both sets are subsets of each other and are therefore equivalent. Here’s is an alternative method of proving the law that relies on determining a subset based on the exclusion of an element rather than inclusion.

 

DeMorgan's Second Law:  $ {(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c $ 

Proof:

  1. If    $ x \notin {(\bigcap^{n}{S_n})}^{c} $
  2. $ \Rightarrow x \in {\bigcap^{n}{S_n}} $
  3. $ \Rightarrow \forall{n}, x \in {S_n} $ 
  4. $ \Rightarrow \forall{n}, x \notin {(S_n)}^{c} $
  5. $ \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}} $
  6. By lines 1 through 5: $ x \notin {(\bigcap^{n}{S_n})}^{c} \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}} $
  7. By line 6; $ {(\bigcap^{n}{S_n})}^{c} \subseteq \bigcup^{n}{(S_n)}^c $
  8. If $ x \notin {\bigcup^{n}{(S_n)}^{c}} $
  9. $ \Rightarrow \forall{n}, x \notin {(S_n)}^{c} $
  10. $ \Rightarrow \forall{n}, x \in {S_n} $
  11. $ \Rightarrow x \in {\bigcup^{n}{S_n}} $
  12. $ \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c} $
  13. By lines 8 through 12:$ x \notin {\bigcup^{n}{(S_n)}^{c}} \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c} $
  14. By line 13:$ {(\bigcap^{n}{S_n})}^{c} \supseteq \bigcup^{n}{(S_n)}^c $
  15. By lines 7 and 15 $ {(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c $
       


Back to 2013 Spring ECE 302 Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett