(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:2013 Spring ECE 302 Boutin]][[Category:2013 Spring ECE 302 Boutin]][[Category:2013 Spring ECE 302 Boutin]]
+
<br><br>
  
=DeMorgans_Second_Law_ECE302S13Boutin=
+
= Alternative Proof for DeMorgan's Second Law  =
  
 +
By Oluwatola Adeola
  
 +
[[ECE302|<font color="#0066cc">ECE 302,</font>]] [[List of Course Wikis#2013|<font color="#0066cc">Spring 2013</font>]], [[User:Mboutin|Professor Boutin]]
  
Put your content here . . .
+
<br>
  
 +
During lecture, a proof of DeMorgan’s second law was given as a possible solution to the quiz which was based on showing that both sets are subsets of each other and are therefore equivalent. Here’s is an alternative method of proving the law that relies on determining a subset based on the exclusion of an element rather than inclusion.
  
 +
&nbsp;
 +
DeMorgan's Second Law:&nbsp; <math class = "center">{(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c</math>&nbsp;
  
 +
Proof:
 +
#<math class = "center">
 +
\begin{align}
 +
x \notin {(\bigcap^{n}{S_n})}^{c} & \Rightarrow x \in {\bigcap^{n}{S_n}} \\
 +
& \Rightarrow \forall{n}, x \in {S_n} \\
 +
& \Rightarrow \forall{n}, x \notin {(S_n)}^{c} \\
 +
& \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}}
 +
\end{align}
 +
</math>&nbsp;
 +
#<math class = "center">{(\bigcap^{n}{S_n})}^{c} \subseteq \bigcup^{n}{(S_n)}^c</math>
 +
#<math class = "center">
 +
\begin{align}
 +
x \notin {\bigcup^{n}{(S_n)}^{c}} & \Rightarrow \forall{n}, x \notin {(S_n)}^{c} \\
 +
& \Rightarrow \forall{n}, x \in {S_n} \\
 +
& \Rightarrow x \in {\bigcup^{n}{S_n}} \\
 +
& \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c}
 +
\end{align}
 +
</math>&nbsp;
 +
#<math class = "center>{(\bigcap^{n}{S_n})}^{c} \supseteq \bigcup^{n}{(S_n)}^c</math>
 +
#By lines&nbsp;2 and 4:  &nbsp;<math class = "center">{(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c</math>&nbsp;<span class="texhtml">&nbsp;</span>&nbsp;
  
[[ 2013 Spring ECE 302 Boutin|Back to 2013 Spring ECE 302 Boutin]]
+
 
 +
 
 +
----
 +
Formatting help:
 +
<math>
 +
\begin{align}
 +
x \notin {(\bigcap^{n}{S_n})}^{c} & \Rightarrow  x \in {\bigcap^{n}{S_n}}\\
 +
&\Rightarrow \forall{n}, x \in {S_n}
 +
\end{align}
 +
</math>
 +
 
 +
 
 +
Example of alignments: <math>x+y</math> <math>x_3^7+y </math> <math class="inline">x_3^7+y</math>
 +
----
 +
<br>[[2013 Spring ECE 302 Boutin|Back to 2013 Spring ECE 302 Boutin]]
 +
 
 +
[[Category:ECE302Spring2013Boutin]] [[Category:ECE]] [[Category:ECE302]] [[Category:Probability]] [[Category:Proofs]] [[Category:DeMorgan's_Second_Law]]

Latest revision as of 12:01, 19 March 2013



Alternative Proof for DeMorgan's Second Law

By Oluwatola Adeola

ECE 302, Spring 2013, Professor Boutin


During lecture, a proof of DeMorgan’s second law was given as a possible solution to the quiz which was based on showing that both sets are subsets of each other and are therefore equivalent. Here’s is an alternative method of proving the law that relies on determining a subset based on the exclusion of an element rather than inclusion.

  DeMorgan's Second Law:  $ {(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c $ 

Proof:

  1. $ \begin{align} x \notin {(\bigcap^{n}{S_n})}^{c} & \Rightarrow x \in {\bigcap^{n}{S_n}} \\ & \Rightarrow \forall{n}, x \in {S_n} \\ & \Rightarrow \forall{n}, x \notin {(S_n)}^{c} \\ & \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}} \end{align} $ 
  2. $ {(\bigcap^{n}{S_n})}^{c} \subseteq \bigcup^{n}{(S_n)}^c $
  3. $ \begin{align} x \notin {\bigcup^{n}{(S_n)}^{c}} & \Rightarrow \forall{n}, x \notin {(S_n)}^{c} \\ & \Rightarrow \forall{n}, x \in {S_n} \\ & \Rightarrow x \in {\bigcup^{n}{S_n}} \\ & \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c} \end{align} $ 
  4. $ {(\bigcap^{n}{S_n})}^{c} \supseteq \bigcup^{n}{(S_n)}^c $
  5. By lines 2 and 4:  $ {(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c $   



Formatting help: $ \begin{align} x \notin {(\bigcap^{n}{S_n})}^{c} & \Rightarrow x \in {\bigcap^{n}{S_n}}\\ &\Rightarrow \forall{n}, x \in {S_n} \end{align} $


Example of alignments: $ x+y $ $ x_3^7+y $ $ x_3^7+y $



Back to 2013 Spring ECE 302 Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett