Line 25: Line 25:
 
Consider a CT cosine signal (a pure frequency), and sample that signal with a rate above or below Nyquist rate. In this  
 
Consider a CT cosine signal (a pure frequency), and sample that signal with a rate above or below Nyquist rate. In this  
 
slecture, I will talk about how does the discrete-time Fourier transform of the sampling of this signal look like. Suppose
 
slecture, I will talk about how does the discrete-time Fourier transform of the sampling of this signal look like. Suppose
the cosine signal is <math>x(t)=cos(2pi*440t)</math>.
+
the cosine signal is <math>x(t)=cos(2\pi 440 t)</math>.
 
== Sampling rate above Nyquist rate ==
 
== Sampling rate above Nyquist rate ==
The Nyquist sampling rate <math>fs=2fM=880</math>,so we pick a sample frequency 1000 which is above the Nyquist rate.
+
The Nyquist sampling rate <math>f_s=2f_M=880</math>,so we pick a sample frequency 1000 which is above the Nyquist rate.
  
 
<math> \begin{align} \\
 
<math> \begin{align} \\
 
x_1[n] & =x(\frac{n}{1000}) \\
 
x_1[n] & =x(\frac{n}{1000}) \\
& =cos(\frac{2\pi440*n}{1000}) \\
+
& =cos(\frac{2\pi440 n}{1000}) \\
& =\frac{1}{2}(e^{\frac{j2\pi440*n}{1000}}+e^{\frac{-j2\pi440*n}{1000}})\\
+
& =\frac{1}{2}(e^{\frac{j2\pi440 n}{1000}}+e^{\frac{-j2\pi440 n}{1000}})\\
 
\end{align}  
 
\end{align}  
 
</math>
 
</math>
  
since <math>\frac{2\pi*440}{1000}</math> is between <math>-\pi</math> and <math>\pi</math>, so for <math>\omega \isin [-\pi,\pi]</math>
+
since <math>\frac{2\pi 440}{1000}</math> is between <math>-\pi</math> and <math>\pi</math>, so for <math>\omega \isin [-\pi,\pi]</math>
  
 
<math> \begin{align} \\
 
<math> \begin{align} \\
Line 60: Line 60:
 
</math>
 
</math>
  
since <math>\frac{2\pi*440}{1000}</math> is between <math>-\pi</math> and <math>\pi</math>, so for <math>\omega \isin [-\pi,\pi]</math>
+
since <math>\frac{2\pi*360}{800}</math> is between <math>-\pi</math> and <math>\pi</math>, so for <math>\omega \isin [-\pi,\pi]</math>
  
 
<math> \begin{align} \\
 
<math> \begin{align} \\
\mathcal{X}_1(\omega) & =\frac{1}{2}[2\pi\delta(\omega-2\pi\frac{440}{1000})+2\pi\delta(\omega+2\pi\frac{440}{1000})] \\
+
\mathcal{X}_2(\omega) & =\frac{1}{2}[2\pi\delta(\omega-2\pi\frac{360}{800})+2\pi\delta(\omega+2\pi\frac{360}{800})] \\
& = \frac{1000}{2}[\delta(\frac{1000}{2\pi}\omega-440)+\delta(\frac{1000}{2\pi}\omega+440)]
+
& = \frac{800}{2}[\delta(\frac{800}{2\pi}\omega-360)+\delta(\frac{800}{2\pi}\omega+360)]
 
\end{align}  
 
\end{align}  
 
</math>
 
</math>
  
for all w
+
for all w,
  
<math>\mathcal{X}_1(\omega) = rep_{2\pi}{\frac{1000}{2}[\delta(\frac{1000}{2\pi}\omega-440)+\delta(\frac{1000}{2\pi}\omega+440)]}</math>
+
<math>\mathcal{X}_2(\omega) = rep_{2\pi}{\frac{800}{2}[\delta(\frac{800}{2\pi}\omega-360)+\delta(\frac{800}{2\pi}\omega+360)]}</math>
 
== Conclusion ==
 
== Conclusion ==
  

Revision as of 13:13, 27 September 2014


Discrete-time Fourier transform (DTFT) of a sampled cosine

A slecture by ECE student Yijun Han

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


outline

  • Introduction
  • Sampling rate above Nyquist rate
  • Sampling rate below Nyquist rate
  • Conclusion
  • References

Introduction

Consider a CT cosine signal (a pure frequency), and sample that signal with a rate above or below Nyquist rate. In this slecture, I will talk about how does the discrete-time Fourier transform of the sampling of this signal look like. Suppose the cosine signal is $ x(t)=cos(2\pi 440 t) $.

Sampling rate above Nyquist rate

The Nyquist sampling rate $ f_s=2f_M=880 $,so we pick a sample frequency 1000 which is above the Nyquist rate.

$ \begin{align} \\ x_1[n] & =x(\frac{n}{1000}) \\ & =cos(\frac{2\pi440 n}{1000}) \\ & =\frac{1}{2}(e^{\frac{j2\pi440 n}{1000}}+e^{\frac{-j2\pi440 n}{1000}})\\ \end{align} $

since $ \frac{2\pi 440}{1000} $ is between $ -\pi $ and $ \pi $, so for $ \omega \isin [-\pi,\pi] $

$ \begin{align} \\ \mathcal{X}_1(\omega) & =\frac{1}{2}[2\pi\delta(\omega-2\pi\frac{440}{1000})+2\pi\delta(\omega+2\pi\frac{440}{1000})] \\ & = \frac{1000}{2}[\delta(\frac{1000}{2\pi}\omega-440)+\delta(\frac{1000}{2\pi}\omega+440)] \end{align} $

for all w

$ \mathcal{X}_1(\omega) = rep_{2\pi}{\frac{1000}{2}[\delta(\frac{1000}{2\pi}\omega-440)+\delta(\frac{1000}{2\pi}\omega+440)]} $

Sampling rate below Nyquist rate

we pick a sample frequency 800 which is above the Nyquist rate.

$ \begin{align} \\ x_2[n] & =x(\frac{n}{800}) \\ & =cos(\frac{2\pi440 n}{800}) \\ & =cos(\frac{2\pi440 n}{800}-2\pi n) \\ & =cos(2\pi n \frac{-360}{800}) \\ & =cos(\frac{2\pi360 n}{800}) \\ & =\frac{1}{2}(e^{\frac{j2\pi360*n}{800}}+e^{\frac{-j2\pi360*n}{800}})\\ \end{align} $

since $ \frac{2\pi*360}{800} $ is between $ -\pi $ and $ \pi $, so for $ \omega \isin [-\pi,\pi] $

$ \begin{align} \\ \mathcal{X}_2(\omega) & =\frac{1}{2}[2\pi\delta(\omega-2\pi\frac{360}{800})+2\pi\delta(\omega+2\pi\frac{360}{800})] \\ & = \frac{800}{2}[\delta(\frac{800}{2\pi}\omega-360)+\delta(\frac{800}{2\pi}\omega+360)] \end{align} $

for all w,

$ \mathcal{X}_2(\omega) = rep_{2\pi}{\frac{800}{2}[\delta(\frac{800}{2\pi}\omega-360)+\delta(\frac{800}{2\pi}\omega+360)]} $

Conclusion

References

[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009



Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang