Line 4: Line 4:
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Basic Definitions
 
! colspan="2" style="background: #eee;" | Basic Definitions
 +
|-
 +
| align="right" style="padding-right: 1em;" | imaginary number || <math>i=\sqrt{-1} \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | electrical engineers imaginary number || <math>j=\sqrt{-1}\ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | conjugate of a complex number || if <math>z=a+jb</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-jb </math>
 
| align="right" style="padding-right: 1em;" | conjugate of a complex number || if <math>z=a+jb</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-jb </math>

Revision as of 08:27, 30 October 2009

Complex Number Identities and Formulas
Basic Definitions
imaginary number $ i=\sqrt{-1} \ $
electrical engineers imaginary number $ j=\sqrt{-1}\ $
conjugate of a complex number if $ z=a+jb $, for $ a,b\in {\mathbb R} $, then $ \bar{z}=a-jb $
magnitude of a complex number $ \| z \| = z \bar{z} $
magnitude of a complex number $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $
magnitude of a complex number $ \| a+jb \| = \sqrt{a^2+b^2} $, for $ a,b\in {\mathbb R} $
magnitude of a complex number $ \| r e^{j \theta} \| = r $, for $ r,\theta\in {\mathbb R} $
Euler's Formula and Related Equalities
Euler's formula $ e^{jw_0t}=\cos w_0t+j\sin w_0t $
Cosine function in terms of complex exponentials $ \cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $
Sine function in terms of complex exponentials $ \sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett