Revision as of 08:19, 28 October 2009 by Mboutin (Talk | contribs)

CT Fourier Transform Pairs and Properties

Using $ \omega $ in radians to parametrize the Fourier transforms.


CT Fourier transform and its Inverse
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $
Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $
CT Fourier Transform Pairs
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a complex exponential $ e^{jw_0t} $
CT Fourier Transform Properties
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x(-t) $ $ \ X(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation

Back to Collective Table




Back to Collective Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn