Revision as of 08:19, 28 October 2009 by Mboutin (Talk | contribs)

CT Fourier Transform Pairs and Properties

Using $ \omega $ in radians to parametrize the Fourier transforms.


CT Fourier transform and its Inverse
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $
Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $
CT Fourier Transform Pairs
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a complex exponential $ e^{jw_0t} $
CT Fourier Transform Properties
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x(-t) $ $ \ X(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation

Back to Collective Table




Back to Collective Table

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang