(39 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 +
[[Category:Formulas]]
 +
[[Category:Fourier transform]]
 +
[[Category:ECE301]]
 +
[[Category:ECE438]]
 +
 +
<center><font size= 4>
 +
'''[[Collective_Table_of_Formulas|Collective Table of Formulas]]'''
 +
</font size>
 +
 +
Table of Continuous-time (CT)  Fourier Transform Pairs and Properties
 +
 +
as a function of <math>\omega</math> in radians per time unit
 +
 +
(used in [[ECE301]])
 +
 +
</center>
 +
 +
----
 +
 
{|
 
{|
|-
 
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | CT Fourier Transform Pairs and Properties (frequency <span class="texhtml">ω</span> in radians per time unit) [[More on CT Fourier transform|(info)]]
 
 
|-
 
|-
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse
Line 8: Line 25:
 
| <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math>
 
| <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[More on CT Fourier transform|(info)]] Inverse DT Fourier Transform  
+
| align="right" style="padding-right: 1em;" | [[More on CT Fourier transform|(info)]] Inverse CT Fourier Transform  
 
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\,</math>
 
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\,</math>
 
|}
 
|}
Line 16: Line 33:
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | <br>
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <span class="texhtml">''x''(''t'')</span>
+
| signal (function of t)
| <math>\longrightarrow</math>
+
| <math>\longrightarrow</math>  
| <math> \mathcal{X}(\omega) </math>
+
| Fourier transform (function of <math>\omega</math>)
 +
|
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 1
 
| align="right" style="padding-right: 1em;" | CTFT of a unit impulse  
 
| align="right" style="padding-right: 1em;" | CTFT of a unit impulse  
 
| <math>\delta (t)\ </math>  
 
| <math>\delta (t)\ </math>  
 
|  
 
|  
| <math> 1 \! \ </math>
+
| <math> 1 \ </math>  
 +
|
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 2
 
| align="right" style="padding-right: 1em;" | CTFT of a shifted unit impulse  
 
| align="right" style="padding-right: 1em;" | CTFT of a shifted unit impulse  
 
| <math>\delta (t-t_0)\ </math>  
 
| <math>\delta (t-t_0)\ </math>  
 
|  
 
|  
| <math>e^{iwt_0}</math>
+
| <math>e^{-iwt_0}</math>  
 +
|
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 3
 
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential  
 
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential  
 
| <math>e^{iw_0t}</math>  
 
| <math>e^{iw_0t}</math>  
 
|  
 
|  
 
| <math> 2\pi \delta (\omega - \omega_0) \ </math>  
 
| <math> 2\pi \delta (\omega - \omega_0) \ </math>  
 +
|
 
|  
 
|  
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 4
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math>e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>  
+
| <math>e^{-at}u(t),\ </math> <math>a\in {\mathbb R}, a>0 </math>  
 
|  
 
|  
 
| <math>\frac{1}{a+i\omega}</math>  
 
| <math>\frac{1}{a+i\omega}</math>  
 +
|
 
|  
 
|  
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 5
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math>te^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>  
+
| <math>te^{-at}u(t),\ </math> <math>a\in {\mathbb R}, a>0 </math>  
 
|  
 
|  
 
| <math>\left( \frac{1}{a+i\omega}\right)^2</math>  
 
| <math>\left( \frac{1}{a+i\omega}\right)^2</math>  
 +
|
 
|  
 
|  
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 6
 
| align="right" style="padding-right: 1em;" | CTFT of a cosine  
 
| align="right" style="padding-right: 1em;" | CTFT of a cosine  
 
| <math>\cos(\omega_0 t) \ </math>  
 
| <math>\cos(\omega_0 t) \ </math>  
 
|  
 
|  
 
| <math> \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ </math>  
 
| <math> \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ </math>  
 +
|
 
|  
 
|  
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 7
 
| align="right" style="padding-right: 1em;" | CTFT of a sine  
 
| align="right" style="padding-right: 1em;" | CTFT of a sine  
 
| <math>sin(\omega_0 t)  \ </math>  
 
| <math>sin(\omega_0 t)  \ </math>  
 
|  
 
|  
 
| <math>\frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right]</math>  
 
| <math>\frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right]</math>  
 +
|
 
|  
 
|  
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 8
 
| align="right" style="padding-right: 1em;" | CTFT of a rect  
 
| align="right" style="padding-right: 1em;" | CTFT of a rect  
 
| <math>\left\{\begin{array}{ll}1, &  \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ </math>  
 
| <math>\left\{\begin{array}{ll}1, &  \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ </math>  
 
|  
 
|  
 
| <math> \frac{2 \sin \left( T \omega \right)}{\omega}  \ </math>  
 
| <math> \frac{2 \sin \left( T \omega \right)}{\omega}  \ </math>  
 +
|
 
|  
 
|  
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 9
 
| align="right" style="padding-right: 1em;" | CTFT of a sinc  
 
| align="right" style="padding-right: 1em;" | CTFT of a sinc  
| <math>\frac{2 \sin \left( W t  \right)}{\pi t }  \ </math>  
+
| <math>\frac{\sin \left( W t  \right)}{\pi t }  \ </math>  
 
|  
 
|  
 
| <math>\left\{\begin{array}{ll}1, &  \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right.  \ </math>  
 
| <math>\left\{\begin{array}{ll}1, &  \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right.  \ </math>  
 +
|
 
|  
 
|  
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 10
 
| align="right" style="padding-right: 1em;" | CTFT of a periodic function  
 
| align="right" style="padding-right: 1em;" | CTFT of a periodic function  
 
| <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math>  
 
| <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math>  
 
|  
 
|  
 
| <math>2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ </math>  
 
| <math>2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ </math>  
 +
|
 
|  
 
|  
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 11
 
| align="right" style="padding-right: 1em;" | CTFT of an impulse train  
 
| align="right" style="padding-right: 1em;" | CTFT of an impulse train  
 
| <math>\sum^{\infty}_{n=-\infty} \delta(t-nT)  \ </math>  
 
| <math>\sum^{\infty}_{n=-\infty} \delta(t-nT)  \ </math>  
 
|  
 
|  
| <math>\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) \ </math>  
+
| <math>\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})</math>
 +
|
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | 12
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> 1 \  </math>
 +
|
 +
| <math>2\pi \delta (\omega) \ </math>
 +
|
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | 13
 +
| align="right" style="padding-right: 1em;" | CTFT of a Periodic Square Wave
 +
| <math>x(t+T)=x(t)=\left\{\begin{array}{ll}1, &  |t|\leq T_1,\\ 0, & T_1<|t|\leq T/2 \end{array} \right.</math>
 +
|
 +
| <math>\sum^{\infty}_{k=-\infty}\frac{2 \sin(k\frac{2\pi}{T}T_1)}{k}\delta(\omega-k\frac{2\pi}{T})</math>
 +
|
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | 14
 +
| align="right" style="padding-right: 1em;" | CTFT of a Step Function
 +
| <math> u(t) \  </math>
 +
|
 +
| <math>\frac{1}{j\omega}+\pi\delta(\omega)</math>
 +
|
 +
|
 +
|-
 +
| align="right" style="padding-right: 1em;" | 15
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> e^{-\alpha |t|}  \ </math>
 +
|
 +
| <math>\frac{2\alpha}{\alpha^{2}+\omega^{2}}</math>  
 +
|
 
|  
 
|  
 
|}
 
|}
Line 88: Line 161:
 
{|
 
{|
 
|-
 
|-
 +
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" |
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <span class="texhtml">''x''(''t'')</span>  
+
| align="right" style="padding-right: 1em;" |
| <math>\longrightarrow</math>
+
| <math> x(t) \ </math>  
 +
| <math>\longrightarrow</math>  
 
| <math> \mathcal{X}(\omega) </math>
 
| <math> \mathcal{X}(\omega) </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | multiplication property
+
| align="right" style="padding-right: 1em;" | 16
 +
| align="right" style="padding-right: 1em;" | [[Info multiplication property FT w|(info)]] multiplication property  
 
| <math>x(t)y(t) \ </math>  
 
| <math>x(t)y(t) \ </math>  
 
|  
 
|  
| <math>\frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta</math>
+
| <math>\frac{1}{2\pi} \mathcal{X}(\omega)*\mathcal{Y}(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\theta)\mathcal{Y}(\omega-\theta)d\theta</math>
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 17
 
| align="right" style="padding-right: 1em;" | convolution property  
 
| align="right" style="padding-right: 1em;" | convolution property  
| <math>x(t)*y(t) \!</math>  
+
| <math>x(t)*y(t) \ </math>  
 
|  
 
|  
| <math> X(\omega)Y(\omega) \!</math>
+
| <math> \mathcal{X}(\omega)\mathcal{Y}(\omega) \!</math>
 
|-
 
|-
 +
| align="right" style="padding-right: 1em;" | 18
 
| align="right" style="padding-right: 1em;" | time reversal  
 
| align="right" style="padding-right: 1em;" | time reversal  
 
| <math>\ x(-t) </math>  
 
| <math>\ x(-t) </math>  
 
|  
 
|  
| <math>\ X(-\omega)</math>
+
| <math>\ \mathcal{X}(-\omega)</math>
|}
+
|-
 +
| align="right" style="padding-right: 1em;" | 19
 +
| align="right" style="padding-right: 1em;" | Frequency Shifting
 +
| <math>e^{j\omega_0 t}x(t)</math>
 +
|
 +
| <math> \mathcal{X} (\omega - \omega_0) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 20
 +
| align="right" style="padding-right: 1em;"| Conjugation
 +
| <math> x^{*}(t) \  </math>
 +
|
 +
| <math> \mathcal{X}^{*} (-\omega)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 21
 +
| align="right" style="padding-right: 1em;" | Time and Frequency Scaling
 +
| <math> x(at) \  </math>
 +
|
 +
| <math>\frac{1}{|a|} \mathcal{X} (\frac{\omega}{a})</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 23
 +
| align="right" style="padding-right: 1em;" | Differentiation in Frequency
 +
| <math> tx(t) \  </math>
 +
|
 +
| <math>j\frac{d}{d\omega} \mathcal{X} (\omega)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 24
 +
| align="right" style="padding-right: 1em;" | Symmetry
 +
| <math> x(t)\ \text{ real and even}</math>
 +
|
 +
| <math> \mathcal{X} (\omega) \ \text{ real and even} </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 25
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> x(t) \ \text{ real and odd}</math>
 +
|
 +
| <math> \mathcal{X} (\omega) \ \text{ purely imaginary and odd} </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 26
 +
| align="right" style="padding-right: 1em;" | Duality
 +
| <math> \mathcal{X} (-t) </math>
 +
|
 +
| <math> 2 \pi x (\omega) \  </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 27
 +
| align="right" style="padding-right: 1em;" | Differentiation
 +
| <math>\frac{d^{n}x(t)}{dt^{n}}</math>
 +
|
 +
| <math> (j \omega)^{n} \mathcal{X} (\omega) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 28
 +
| align="right" style="padding-right: 1em;" | Linearity
 +
| <math> ax(t) + by(t) \  </math>
 +
|
 +
| <math> a \mathcal{X}(\omega) + b \mathcal{Y} (\omega) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | 29
 +
| align="right" style="padding-right: 1em;" | Time Shifting
 +
| <math> x(t-t_0) \  </math>
 +
|
 +
| <math>e^{-j\omega t_0}X(\omega)</math>  
 +
|}  
  
 
{|
 
{|
Line 119: Line 257:
 
|}
 
|}
  
 +
<br>
 
----
 
----
[[Collective_Table_of_Formulas|Back to Collective Table]]
+
[[Collective Table of Formulas|Back to Collective Table]]
 
+
[[Category:Formulas]]
+

Latest revision as of 11:45, 24 August 2016


Collective Table of Formulas

Table of Continuous-time (CT) Fourier Transform Pairs and Properties

as a function of $ \omega $ in radians per time unit

(used in ECE301)


Definition CT Fourier Transform and its Inverse
(info) CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt $
(info) Inverse CT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\, $
CT Fourier Transform Pairs

signal (function of t) $ \longrightarrow $ Fourier transform (function of $ \omega $)
1 CTFT of a unit impulse $ \delta (t)\ $ $ 1 \ $
2 CTFT of a shifted unit impulse $ \delta (t-t_0)\ $ $ e^{-iwt_0} $
3 CTFT of a complex exponential $ e^{iw_0t} $ $ 2\pi \delta (\omega - \omega_0) \ $
4 $ e^{-at}u(t),\ $ $ a\in {\mathbb R}, a>0 $ $ \frac{1}{a+i\omega} $
5 $ te^{-at}u(t),\ $ $ a\in {\mathbb R}, a>0 $ $ \left( \frac{1}{a+i\omega}\right)^2 $
6 CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $
7 CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $
8 CTFT of a rect $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ $ \frac{2 \sin \left( T \omega \right)}{\omega} \ $
9 CTFT of a sinc $ \frac{\sin \left( W t \right)}{\pi t } \ $ $ \left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $
10 CTFT of a periodic function $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ $ 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ $
11 CTFT of an impulse train $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ $ \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) $
12 $ 1 \ $ $ 2\pi \delta (\omega) \ $
13 CTFT of a Periodic Square Wave $ x(t+T)=x(t)=\left\{\begin{array}{ll}1, & |t|\leq T_1,\\ 0, & T_1<|t|\leq T/2 \end{array} \right. $ $ \sum^{\infty}_{k=-\infty}\frac{2 \sin(k\frac{2\pi}{T}T_1)}{k}\delta(\omega-k\frac{2\pi}{T}) $
14 CTFT of a Step Function $ u(t) \ $ $ \frac{1}{j\omega}+\pi\delta(\omega) $
15 $ e^{-\alpha |t|} \ $ $ \frac{2\alpha}{\alpha^{2}+\omega^{2}} $
CT Fourier Transform Properties
$ x(t) \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
16 (info) multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} \mathcal{X}(\omega)*\mathcal{Y}(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\theta)\mathcal{Y}(\omega-\theta)d\theta $
17 convolution property $ x(t)*y(t) \ $ $ \mathcal{X}(\omega)\mathcal{Y}(\omega) \! $
18 time reversal $ \ x(-t) $ $ \ \mathcal{X}(-\omega) $
19 Frequency Shifting $ e^{j\omega_0 t}x(t) $ $ \mathcal{X} (\omega - \omega_0) $
20 Conjugation $ x^{*}(t) \ $ $ \mathcal{X}^{*} (-\omega) $
21 Time and Frequency Scaling $ x(at) \ $ $ \frac{1}{|a|} \mathcal{X} (\frac{\omega}{a}) $
23 Differentiation in Frequency $ tx(t) \ $ $ j\frac{d}{d\omega} \mathcal{X} (\omega) $
24 Symmetry $ x(t)\ \text{ real and even} $ $ \mathcal{X} (\omega) \ \text{ real and even} $
25 $ x(t) \ \text{ real and odd} $ $ \mathcal{X} (\omega) \ \text{ purely imaginary and odd} $
26 Duality $ \mathcal{X} (-t) $ $ 2 \pi x (\omega) \ $
27 Differentiation $ \frac{d^{n}x(t)}{dt^{n}} $ $ (j \omega)^{n} \mathcal{X} (\omega) $
28 Linearity $ ax(t) + by(t) \ $ $ a \mathcal{X}(\omega) + b \mathcal{Y} (\omega) $
29 Time Shifting $ x(t-t_0) \ $ $ e^{-j\omega t_0}X(\omega) $
Other CT Fourier Transform Properties
Parseval's relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $



Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett