Line 38: Line 38:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math>e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>  
+
| <math>e^{-at}u(t),\ </math> <math>a\in {\mathbb R}, a>0 </math>  
 
|  
 
|  
 
| <math>\frac{1}{a+i\omega}</math>  
 
| <math>\frac{1}{a+i\omega}</math>  
Line 44: Line 44:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math>te^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>  
+
| <math>te^{-at}u(t),\ </math> <math>a\in {\mathbb R}, a>0 </math>  
 
|  
 
|  
 
| <math>\left( \frac{1}{a+i\omega}\right)^2</math>  
 
| <math>\left( \frac{1}{a+i\omega}\right)^2</math>  

Revision as of 11:08, 16 November 2010

CT Fourier Transform Pairs and Properties (frequency ω in radians per time unit) (info)
Definition CT Fourier Transform and its Inverse
(info) CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt $
(info) Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\, $
CT Fourier Transform Pairs
x(t) $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a unit impulse $ \delta (t)\ $ $ 1 \! \ $
CTFT of a shifted unit impulse $ \delta (t-t_0)\ $ $ e^{-iwt_0} $
CTFT of a complex exponential $ e^{iw_0t} $ $ 2\pi \delta (\omega - \omega_0) \ $
$ e^{-at}u(t),\ $ $ a\in {\mathbb R}, a>0 $ $ \frac{1}{a+i\omega} $
$ te^{-at}u(t),\ $ $ a\in {\mathbb R}, a>0 $ $ \left( \frac{1}{a+i\omega}\right)^2 $
CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $
CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $
CTFT of a rect $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ $ \frac{2 \sin \left( T \omega \right)}{\omega} \ $
CTFT of a sinc $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ $ \left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $
CTFT of a periodic function $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ $ 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ $
CTFT of an impulse train $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ $ \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) \ $
CT Fourier Transform Properties
x(t) $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} \mathcal{X}(\omega)*\mathcal{Y}(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\theta)\mathcal{Y}(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ \mathcal{X}(\omega)\mathcal{Y}(\omega) \! $
time reversal $ \ x(-t) $ $ \ \mathcal{X}(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $

Back to Collective Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn