Line 70: Line 70:
 
----
 
----
 
[[ MegaCollectiveTableTrial1|Back to Collective Table]]
 
[[ MegaCollectiveTableTrial1|Back to Collective Table]]
 +
[[Category:Formulas]]

Revision as of 10:21, 2 November 2009

CT Fourier Transform Pairs and Properties (frequency $ \omega $ in radians per time unit) (info)
Definition CT Fourier Transform and its Inverse
(info) CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $
(info) Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $
CT Fourier Transform Pairs
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a unit impulse $ \delta (t)\ $ $ 1 \! \ $
CTFT of a shifted unit impulse $ \delta (t-t_0)\ $ $ e^{jwt_0} \ \ $
CTFT of a complex exponential $ e^{jw_0t}\ $ $ 2\pi \delta (\omega - \omega_0) \ $
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ $ \frac{1}{a+j\omega} \ $
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ $ \left( \frac{1}{a+j\omega}\right)^2 \ $
CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $
CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] \ $
CTFT of a rect $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ $ \frac{2 \sin \left( T \omega \right)}{\omega} \ $
CTFT of a sinc $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ $ \left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $
CTFT of a periodic function $ \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} \ $ $ 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ $
CTFT of an impulse train $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ $ \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) \ $
CT Fourier Transform Properties
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x(-t) $ $ \ X(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $

Back to Collective Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn