Line 4: Line 4:
  
  
 +
{|
 +
! colspan="2" style="background: #eee;" | CT Fourier transform and its Inverse
 +
|-
 +
| align="right" style="padding-right: 1em;" | CT Fourier Transform || <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform || <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\,</math>
 +
|}
 +
{|
 +
|-
 +
! colspan="4" style="background: #eee;" | CT Fourier Transform Pairs
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || ||
 +
|-
 +
|}
  
under constructions
+
{|
 +
|-
 +
! colspan="4" style="background: #eee;" | CT Fourier Transform Properties
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | multiplication property|| <math>x(t)y(t) \ </math> || || <math>\frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |  convolution property || <math>x(t)*y(t) \!</math> || ||<math> X(\omega)Y(\omega) \!</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | time reversal ||<math>\ x(-t) </math> || ||<math>\ X(-\omega)</math>
 +
|-
 +
|}
 +
 
 +
{|
 +
|-
 +
! colspan="2" style="background: #eee;" | Other CT Fourier Transform Properties
 +
|-
 +
| align="right" style="padding-right: 1em;" | Parseval's relation  ||
 +
|}
 +
----
 +
[[ MegaCollectiveTableTrial1|Back to Collective Table]]
  
  

Revision as of 08:19, 28 October 2009

CT Fourier Transform Pairs and Properties

Using $ \omega $ in radians to parametrize the Fourier transforms.


CT Fourier transform and its Inverse
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $
Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $
CT Fourier Transform Pairs
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a complex exponential $ e^{jw_0t} $
CT Fourier Transform Properties
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x(-t) $ $ \ X(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation

Back to Collective Table




Back to Collective Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva