Line 20: Line 20:
 
</math>
 
</math>
  
(b)
+
(b) For Poisson r.v., <math>E[Y_{x}]=Var[Y_{x}]\\
 
+
<math>
+
For Poisson r.v., <math>E[Y_{x}]=Var[Y_{x}]\\
+
 
\Rightarrow
 
\Rightarrow
 
Var[Y_{x}]=\lambda_{x}
 
Var[Y_{x}]=\lambda_{x}
 
</math>
 
</math>
  
(c)
+
(c) The attenuation of photons obeys:
The attenuation of photons obeys:
+
  
 
<math>\frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x}</math>
 
<math>\frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x}</math>
  
(d)
+
(d) The solution is:
The solution is:
+
  
 
<math>\lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t}</math>
 
<math>\lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t}</math>
(e)
+
(e) Based on the result of (d)
Based on the result of (d)
+
  
 
<math>
 
<math>

Revision as of 19:24, 2 December 2015


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2012, Part 2

Part 1 , 2

Solution:

a)

$ \text{Since}\ Y_{x}\ \text{is a Poisson random variable,} \\ \Rightarrow E[Y_{x}]=\lambda_{x}\\ $

(b) For Poisson r.v., $ E[Y_{x}]=Var[Y_{x}]\\ \Rightarrow Var[Y_{x}]=\lambda_{x} $

(c) The attenuation of photons obeys:

$ \frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x} $

(d) The solution is:

$ \lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t} $ (e) Based on the result of (d)

$ \lambda_{T}=\lambda_{0}e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \frac{\lambda_{T}}{\lambda_{0}}=e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \int_0^T \mu(t)\partial t=-ln{\frac{\lambda_{T}}{\lambda_{0}}}=ln{\frac{\lambda_{0}}{\lambda_{T}}} $


Back to ECE QE page:

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang