Line 12: Line 12:
 
== Solution: ==
 
== Solution: ==
  
a) <math>
+
a)  
 +
 
 +
<math>
 
\text{Since}\ Y_{x}\ \text{is a Poisson random variable,} \\
 
\text{Since}\ Y_{x}\ \text{is a Poisson random variable,} \\
 
\Rightarrow
 
\Rightarrow
 
E[Y_{x}]=\lambda_{x}\\
 
E[Y_{x}]=\lambda_{x}\\
 
</math>
 
</math>
(b)<math>
+
 
 +
(b)
 +
 
 +
<math>
 
For Poisson r.v., <math>E[Y_{x}]=Var[Y_{x}]\\
 
For Poisson r.v., <math>E[Y_{x}]=Var[Y_{x}]\\
 
\Rightarrow
 
\Rightarrow
Var[Y_{x}]=\lambda_{x}</math>
+
Var[Y_{x}]=\lambda_{x}
 +
</math>
 +
 
 
(c)
 
(c)
 
The attenuation of photons obeys:
 
The attenuation of photons obeys:
  
 
<math>\frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x}</math>
 
<math>\frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x}</math>
 +
 
(d)
 
(d)
 
The solution is:
 
The solution is:

Revision as of 19:23, 2 December 2015


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2012, Part 2

Part 1 , 2

Solution:

a)

$ \text{Since}\ Y_{x}\ \text{is a Poisson random variable,} \\ \Rightarrow E[Y_{x}]=\lambda_{x}\\ $

(b)

$ For Poisson r.v., <math>E[Y_{x}]=Var[Y_{x}]\\ \Rightarrow Var[Y_{x}]=\lambda_{x} $

(c) The attenuation of photons obeys:

$ \frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x} $

(d) The solution is:

$ \lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t} $ (e) Based on the result of (d)

$ \lambda_{T}=\lambda_{0}e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \frac{\lambda_{T}}{\lambda_{0}}=e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \int_0^T \mu(t)\partial t=-ln{\frac{\lambda_{T}}{\lambda_{0}}}=ln{\frac{\lambda_{0}}{\lambda_{T}}} $


Back to ECE QE page:

Alumni Liaison

EISL lab graduate

Mu Qiao