Revision as of 11:21, 30 January 2011 by Mboutin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 2.28, HW3, ECE301, Summer 2008

Determine if each system is causal and stable.

A

h[n] = (1/5)$ ^n $ u[n]

For n < 0 h[n] = 0 therefore h[n] is causal.

$ \Sigma_{n=0}^\infty $ (1/5)$ ^n $ < $ \infty $ since lim$ _{n->\infty} $ = 0

The system is both causal and stable.

B

h[n] = $ (0.8)^n $ u[n+2]

Since u[n+2] = 1 for n >= -2 and 0 for n < -2 the system is not causal because h[n] $ \neq $ 0 for t < 0.

$ \Sigma_{n = -2}^\infty $ $ (0.8)^n $ < $ \infty $ since $ lim_{n->\infty} (0.8)^n = 0 $, the system is stable.

The system is not causal and stable.

D

h[n] = 5$ ^n $u[3-n]

Since u[3-n] = 1 for n <= 3 and 0 for n > 3, h[n] $ \neq $ 0 for t < 0.

$ \Sigma_{-\infty}^\infty 5^n u[3-n] = \Sigma_{-\infty}^3 5^n < \infty $, therefore the system is stable.

This system is stable but not causal.


Back to HW3

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal