(New page: ==2.28 (a,b,c)== Determine if each system is causal and stable. '''A''' h[n] = (1/5)<math>^n</math> u[n] For n < 0 h[n] = 0 therefore h[n] is causal. <math>\Sigma_{n=0}^\infty</math> (...)
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==2.28 (a,b,c)==
+
[[Category:ECE301Summer08asan]]
 +
[[Category: ECE]]
 +
[[Category: ECE 301]]
 +
[[Category: Summer]]
 +
[[Category: 2008]]
 +
[[Category: asan]]
 +
[[Category: Homework]]
 +
=Problem 2.28, [[Homework_3_-_Summer_08_%28ECE301Summer2008asan%29|HW3]], [[ECE301]], Summer 2008=
 
Determine if each system is causal and stable.
 
Determine if each system is causal and stable.
  
Line 14: Line 21:
 
'''B'''
 
'''B'''
  
h[n] = (0.8)<math>^n</math> u[n+2]
+
h[n] = <math>(0.8)^n</math> u[n+2]
  
 
Since u[n+2] = 1 for n >= -2 and 0 for n < -2 the system is not causal because h[n] <math>\neq</math> 0 for t < 0.
 
Since u[n+2] = 1 for n >= -2 and 0 for n < -2 the system is not causal because h[n] <math>\neq</math> 0 for t < 0.
  
<math>\Sigma_{n = -2}^\infty</math> (0.8)<math>^n</math> < <math>\infty</math> since lim<math>_{n->\infty} (0.8)<math>^n</math> = 0 the system is stable.
+
<math>\Sigma_{n = -2}^\infty</math> <math>(0.8)^n</math> < <math>\infty</math> since <math>lim_{n->\infty} (0.8)^n = 0</math>, the system is stable.
  
 
The system is not causal and stable.
 
The system is not causal and stable.
Line 31: Line 38:
  
 
This system is stable but not causal.
 
This system is stable but not causal.
 +
----
 +
[[Homework_3_-_Summer_08_%28ECE301Summer2008asan%29|Back to HW3]]

Latest revision as of 11:21, 30 January 2011

Problem 2.28, HW3, ECE301, Summer 2008

Determine if each system is causal and stable.

A

h[n] = (1/5)$ ^n $ u[n]

For n < 0 h[n] = 0 therefore h[n] is causal.

$ \Sigma_{n=0}^\infty $ (1/5)$ ^n $ < $ \infty $ since lim$ _{n->\infty} $ = 0

The system is both causal and stable.

B

h[n] = $ (0.8)^n $ u[n+2]

Since u[n+2] = 1 for n >= -2 and 0 for n < -2 the system is not causal because h[n] $ \neq $ 0 for t < 0.

$ \Sigma_{n = -2}^\infty $ $ (0.8)^n $ < $ \infty $ since $ lim_{n->\infty} (0.8)^n = 0 $, the system is stable.

The system is not causal and stable.

D

h[n] = 5$ ^n $u[3-n]

Since u[3-n] = 1 for n <= 3 and 0 for n > 3, h[n] $ \neq $ 0 for t < 0.

$ \Sigma_{-\infty}^\infty 5^n u[3-n] = \Sigma_{-\infty}^3 5^n < \infty $, therefore the system is stable.

This system is stable but not causal.


Back to HW3

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang