Revision as of 17:48, 26 February 2015 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Collective Table of Formulas

Indefinite Integrals with hyperbolic cotangent (coth x)

click here for more formulas


coth x
$ \int coth ax dx=\dfrac{\ln sh ax}{a} +C $
$ \int coth^{2} ax dx=x-\dfrac{coth ax}{a} +C $
$ \int coth^{3} ax dx=\dfrac{1}{a}\dfrac{\ln sh ax}{a}-\dfrac{coth^{2} ax}{2a} +C $
$ \int\dfrac{coth^{n} ax}{sh^{2} ax} dx=\dfrac{coth^{n+1} ax}{(n+1)a} +C $
$ \int\dfrac{dx}{coth ax sh^{2} ax} dx=\dfrac{1}{a}\ln coth ax +C $
$ \int\dfrac{dx}{coth ax} dx=\dfrac{1}{a}\ln ch ax +C $
$ \int x coth ax dx=\dfrac{1}{a^{2}}\biggl\{ ax+\dfrac{(ax)^{3}}{9}-\dfrac{(ax)^{5}}{225}+\dfrac{2(ax)^{7}}{105}+\cdots\dfrac{(-1)^{n-1}2^{2n}B_{n}(ax)^{2n+1}}{(2n+1)|}\biggl\} +C $
$ \int x coth^{2} ax dx=\dfrac{x^{2}}{2}-\dfrac{x coth ax}{a}+\dfrac{1}{a^{2}}\ln sh ax+C $
$ \int\dfrac{coth ax}{x} dx=\biggl\{-\dfrac{1}{ax}+\dfrac{ax}{3}-\dfrac{(ax)^{3}}{135}+\cdots\dfrac{(-1)^{n-1}2^{2n}B_{n}(ax)^{2n-1}}{(2n-1)(2n)!}\biggl\} +C $
$ \int\dfrac{dx}{p+q coth ax}=\dfrac{px}{p^{2}-q^{2}}-\dfrac{q}{a(p^{2}-q^{2})}\ln(p sh ax+q ch ax) +C $
$ \int coth^{n} ax dx=-\dfrac{coth^{n-1} ax}{a(n-1)}+ \int coth^{n-2} ax dx $
Inverse Hyperbolic Cotangent ( arg coth x)
$ \int\arg coth\dfrac{x}{a}dx=x\arg coth x+\dfrac{a}{2}\ln(x^{2}-a^{2}) +C $
$ \int x\arg coth\dfrac{x}{a} dx=\dfrac{ax}{2}+\frac{1}{2}(x^{2}-a^{2})\arg coth\dfrac{x}{a} +C $
$ \int x^{2}\arg coth\dfrac{x}{a} dx=\dfrac{ax^{2}}{6}+\frac{a^{3}}{6}\ln(x^{2}-a^{2})+\dfrac{x^{3}}{3}\arg coth\dfrac{x}{a} +C $
$ \int\dfrac{\arg coth\dfrac{x}{a}}{x}dx=-\Biggl(\dfrac{a}{x}+\dfrac{(\dfrac{a}{x})^{3}}{3^{2}}+\dfrac{(\dfrac{a}{x})^{5}}{5^{2}}+\cdots\Biggl) +C $
$ \int\dfrac{\arg coth\dfrac{x}{a}}{x^{2}}dx=-\dfrac{\arg coth\dfrac{x}{a}}{x}+\dfrac{1}{2a}\ln\Biggl(\dfrac{x^{2}}{x^{2}-a^{2}}\Biggl) +C $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett