Loading web-font TeX/Size1/Regular
Revision as of 17:17, 26 February 2015 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Collective Table of Formulas

Indefinite Integrals with hyperbolic sine (sh x)

click here for more formulas


$ \int sh ax dx=\dfrac{ch ax}{a} +C $
$ \int x sh ax dx=\dfrac{x ch ax}{a}-\dfrac{sh ax}{a^{2}} +C $
$ \int x^{2} sh ax dx=(\dfrac{x^{2}}{a^{2}}+\dfrac{2}{a^{3}}) ch ax-\dfrac{2x}{a^{2}} sh ax +C $
$ \int\dfrac{sh ax}{x} dx=ax+\dfrac{(ax)^{3}}{3\cdot3!}+\dfrac{(ax)^{5}}{5\cdot5!}+\cdots +C $
$ \int\dfrac{sh ax}{x^{2}} dx=- \dfrac{sh ax}{x}+a \int\dfrac{ch ax}{x}dx +C $
$ \int\dfrac{dx}{sh ax}=\dfrac{1}{a}\ln th\dfrac{ax}{2} +C $
$ \int\dfrac{xdx}{sh ax}=\dfrac{1}{a^{2}}\{ax-\dfrac{(ax)^{3}}{18}+\dfrac{7(ax)^{5}}{1800}-\cdots+\dfrac{2(-1)^{n}(2^{2n}-1)B_{n}(ax)^{2n+1}}{(2n+1)!}\} +C $
$ \int sh^{2} ax dx=\dfrac{sh ax ch ax}{2a}-\dfrac{x}{2} +C $
$ \int x sh^{2} ax dx=\dfrac{x sh2ax}{4a}-\dfrac{ch2ax}{8a^{2}}-\dfrac{x^{2}}{4} +C $
$ \int\dfrac{dx}{sh^{2} ax}=-\dfrac{coth ax}{a} +C $
$ \int sh ax sh px dx=\dfrac{sh(a+p) x}{2(a+p)}-\dfrac{sh(a-p)x}{2(a-p)}+C, p=\pm a $
$ \int sh ax sin px dx=\dfrac{a ch ax sin px-p sh ax cos px}{a^{2}+p^{2}} +C $
$ \int sh ax cos px dx=\dfrac{a ch ax cos px+p sh ax sin px}{a^{2}+p^{2}} +C $
$ \int\dfrac{dx}{p+q sh ax}=\dfrac{1}{a\sqrt{p^{2}+q^{2}}}\ln(\dfrac{qe^{ax}+p-\sqrt{p^{2}+q^{2}}}{qe^{ax}+p+\sqrt{p^{2}+q^{2}}}) +C $
$ \int\dfrac{dx}{(p+q sh ax)^{2}}=\dfrac{-q ch ax}{a(p^{2}+q^{2})(p+q sh ax)}+\dfrac{p}{p^{2}+q^{2}} \int\dfrac{dx}{p+q sh ax} $
$ \int\dfrac{dx}{p^{2}+q^{2} sh^{2} ax}=\begin{cases} \dfrac{\dfrac{1}{ap\sqrt{q^{2}-p^{2}}}Arc tg\dfrac{\sqrt{q^{2}-p^{2}} th ax}{p}}{\dfrac{1}{2ap\sqrt{p^{2}-q^{2}}}\ln\biggl(\dfrac{p+\sqrt{p^{2}-q^{2}} th ax}{p-\sqrt{p^{2}-q^{2}} th ax}\biggl)} & .\end{cases}\dfrac{1}{a\sqrt{p^{2}+q^{2}}}\ln\biggl(\dfrac{qe^{ax}+p-\sqrt{p^{2}+q^{2}}}{qe^{ax}+p+\sqrt{p^{2}+q^{2}}}\biggl) +C $
$ \int\dfrac{dx}{p^{2}-q^{2} sh^{2} ax}=\dfrac{1}{2ap\sqrt{p^{2}+q^{2}}}\ln(\dfrac{p+\sqrt{p^{2}+q^{2}} th ax}{p-\sqrt{p^{2}+q^{2}} th ax}) +C $
$ \int x^{m} sh ax dx=\dfrac{x^{m} ch ax}{a}-\dfrac{m}{a}\int x^{m-1}ch ax dx $
$ \int sh^{n} ax dx=\dfrac{sh^{n-1} ax ch ax}{an}-\dfrac{n-1}{n}\int sh^{n-2} ax dx $
$ \int\dfrac{sh ax}{x^{n}} dx=\dfrac{-sh ax}{(n-1)x^{n-1}}+\dfrac{a}{n-1}\int\dfrac{ch ax}{x^{n-1}} dx $
$ \int\dfrac{dx}{sh^{n} ax}=\dfrac{-ch ax}{a(n-1)sh^{n-1} ax}-\dfrac{n-2}{n-1}{\displaystyle \int}\dfrac{dx}{sh^{n-2} ax} $
$ \int\dfrac{x}{sh^{n} ax} dx=\dfrac{-x ch ax}{a(n-1)sh^{n-1} ax}-\dfrac{1}{a^{2}(n-1)(n-2) sh^{n-2} ax}-\dfrac{n-2}{n-1}{\displaystyle \int}\dfrac{dx}{sh^{n-2} ax} $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang