Revision as of 15:22, 25 February 2015 by Rhea (Talk | contribs)


keywords: energy, phasor, exponential

HW1, ECE301, Fall 2008, Prof. Boutin

Problem

Given complex signal $ f(t) = \cos(t) + j \sin(t) $, find $ E_\infty $ and $ P_\infty $.

Background Knowledge

$ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt $

$ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) $


Solution 1

  • $ |x(t)| = |\cos(t) + j \sin(t)| = \sqrt{(\cos(t))^2+(\sin(t))^2} = \sqrt{1} = 1 $
  • $ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt = \int_{-\infty}^\infty 1\,dt = t|_{-\infty}^{\infty} = \infty $
  • $ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1\,dt) = \lim_{T \to \infty} (\frac{1}{2T} t|_{-T}^T) $

$ = \lim_{T \to \infty} (\frac{1}{2T} (2T)) = \lim_{T \to \infty} (1) = 1 $


Solution 2

$ |x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=1 $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt $

   $ E\infty=\int_{-\infty}^\infty |1|^2\,dt=t|_{-\infty}^\infty $
   $ E\infty=\infty $

$ P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|1|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*t|_{-T}^T $  (*) 
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(T-(-T)) $  (*) 
   $ P\infty=lim_{T \to \infty} \ 1 $
   $ P\infty=1 $

*I would be careful using the start symbol to denote multiplication in this context. The start symbol is typically used for denoting convolution in electrical engineering.


Solution 3

$ E\infty=\int_{-\infty}^\infty |x(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |\cos(t)+j\sin(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |e^{j*t}|^2dt $

$ E\infty=\int_{-\infty}^\infty |e^2*e^{j*t}|dt $

$ E\infty=e^2/j*|e^{j*t}|_{-\infty}^{\infty} $

$ E\infty=e^2/j*(\infty-0) $

$ E\infty=\infty $

Compute $ P\infty $

$ x(t)=\cos(t)+j*\sin(t) $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T |x(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T |\cos(t)+j\sin(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\int_{-T}^T|e^{j*t}|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T|e^2*e^{j*t}|dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T|e^2*e^{j*t}|dt $

$ P\infty=\lim_{T \to \infty}\frac{\int_{-\infty}^\infty |e^2*e^{j*t}|dt}{2*T} $

$ P\infty=\frac{d(\int_{-\infty}^\infty |e^2*e^{j*t}|dt)}{d(2*T)} $

$ P\infty=\frac{e^{2*j*t}}{2} $

$ P\infty=\infty $ This answer is problematic. You are computing a quantity which is always real (not complex) and non-negative. This is because you are integrating the norm of something, and a norm is always real and non-negative. Why do you these "j" coming out of your integrals?


Back to CT signal energy page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva