Revision as of 05:38, 28 June 2012 by Mboutin (Talk | contribs)

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 4, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{4. } \left( \text{20 pts} \right) \text{ Consider the following model of a discrete-time system, } $

                    $ x\left ( k+1 \right )=2x\left ( k \right )+u\left ( k \right ), x\left ( 0 \right )=0, 0\leq k\leq 2 $

$ \color{blue}\text{Use the Lagrange multiplier approach to calculate the optimal control sequence} $

                   $ \left \{ u\left ( 0 \right ),u\left ( 1 \right ), u\left ( 2 \right ) \right \} $

$ \color{blue}\text{that transfers the initial state } x\left( 0 \right) \text{ to } x\left( 3 \right)=7 \text{ while minimizing the performance index} $
                   $ J=\frac{1}{2}\sum\limits_{k=0}^2 u\left ( k \right )^{2} $


Share and discuss your solutions below


$ \color{blue}\text{Solution 1:} $

$ \left.\begin{matrix} x\left ( 1 \right )=2x\left ( 0 \right )+\mu\left ( 0\right )\\ x\left ( 2 \right )=2x\left ( 1 \right )+\mu\left ( 1\right )\\ x\left ( 3 \right )=2x\left ( 2 \right )+\mu\left ( 2\right )\\ x\left ( 0 \right )=0 \end{matrix}\right\} \Rightarrow \left\{\begin{matrix} x\left ( 1 \right )=\mu\left ( 0 \right )\\ x\left ( 2 \right )=2\mu\left ( 0 \right )+\mu\left ( 1\right )\\ x\left ( 3 \right )=4\mu\left ( 0 \right )+2\mu\left ( 1\right )+\mu\left ( 2 \right )=7 \end{matrix}\right. $

$ \text{The problem is equivalent to minimize } J=\frac{1}{2}\sum\limits_{k=0}^2 u\left ( k \right )^{2} $

                                                                  $ \text{subject to } 4\mu \left(0 \right)+2\mu \left(1 \right)+\mu\left(2 \right)=7 $

$ \text{Let } h(\mu )=4\mu \left(0 \right)+2\mu \left(1 \right)+\mu\left(2 \right)-7 $

$ \text{FONC: } \left\{\begin{matrix} l\left(\mu,\lambda \right)=\nabla J\left ( \mu \right )+\lambda\nabla h\left( \mu \right)=\begin{pmatrix} \mu\left ( 0 \right )\\ \mu\left ( 1 \right )\\ \mu\left ( 2 \right ) \end{pmatrix}+\lambda\begin{pmatrix} 4\\ 2\\ 1 \end{pmatrix} =0\\ h(\mu )=4\mu \left(0 \right)+2\mu \left(1 \right)+\mu\left(2 \right)-7=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu\left(0 \right)=\frac{4}{3}\\ \mu\left(1 \right)=\frac{2}{3}\\ \mu\left(2 \right)=\frac{1}{3}\\ \lambda=-\frac{1}{3} \end{matrix}\right. $

$ \text{SOSC: } L\left( \mu,\lambda \right)=\nabla l\left( \mu,\lambda \right)=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}>0 $

The sequence  $ \mu\left( 0 \right)=\frac{4}{3},\mu\left( 1 \right)=\frac{2}{3},\mu\left( 2 \right)=\frac{1}{3} $  satisfies SOSC. It is the optimal sequence.



$ \color{blue}\text{Solution 2:} $

$ x\left ( 1 \right )=\mu\left ( 0 \right ) $

$ x\left ( 2 \right )=2\mu\left ( 0 \right )+\mu\left ( 1 \right ) $

$ x\left ( 3 \right )=4\mu\left ( 0 \right )+2\mu\left ( 1\right )+\mu\left ( 2 \right )=7 $

$ \text{The problem transfer to min } J\left ( \mu \right )=\frac{1}{2} \mu \left ( 0 \right )^{2}+\frac{1}{2} \mu \left ( 1 \right )^{2}+\frac{1}{2} \mu \left ( 2 \right )^{2} $

                                             $ \text{subject to } h(\mu )=4\mu \left(0 \right)+2\mu \left(1 \right)+\mu\left(2 \right)-7=0 $

$ \text{Apply KKT condition: } Dl\left( \mu ,\lambda \right)=DJ\left(\mu \right)+\lambda Dh\left(\mu \right)=\left[ \mu\left(0 \right)+4\lambda,\mu\left(1 \right)+2\lambda,\mu\left(2 \right)+\lambda \right]=0 $

                                                      $ \left\{\begin{matrix} \mu\left(0 \right)+4\lambda=0\\ \mu\left(1 \right)+2\lambda=0\\ \mu\left(2 \right)+\lambda=0\\ 4\mu\left(0 \right)+2\mu\left(1 \right)+\mu\left(2 \right)-7=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu\left(0 \right)=\frac{4}{3}\\ \mu\left(1 \right)=\frac{2}{3}\\ \mu\left(2 \right)=\frac{1}{3}\\ \lambda=-\frac{1}{3} \end{matrix}\right. $

$ \text{Check SOSC: } L\left( \mu,\lambda \right)=D^{2}l\left( \mu,\lambda \right)=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}>0 $

                                 $ \therefore \text{For all y, } y^{T}Ly\geq 0 $

$ \therefore \text{sequence } \left\{ \frac{4}{3},\frac{2}{3},\frac{1}{3} \right\} \text{ satisfy SOSC is a strict minimizer of the problem.} $


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang