• '''a)''' Obtain the unit impulse response h[n] and the system function H(z) of f. '''b)''' Compute the response of f to the signal x[n] found [[HW4.2_Brian_Thomas_ECE301Fall2008mboutin|he
    2 KB (355 words) - 16:48, 25 September 2008
  • Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>. The unit impulse response is simply (plug a <math>\,\delta(t)\,</math> into the system)
    2 KB (434 words) - 18:11, 25 September 2008
  • ...t <math> x[n] = \delta [n] </math> to y[n]. h[n] is then the unit impulse response.<br><br> === b) Response of Signal in Question 1 ===
    2 KB (390 words) - 07:56, 26 September 2008
  • Find the system's unit impulse response <math>\,h[n]\,</math> and system function <math>\,H(z)\,</math>. The unit impulse response is simply (plug a <math>\,\delta[n]\,</math> into the system)
    2 KB (360 words) - 18:54, 25 September 2008
  • ==CT LTI Impulse Response== ==Response to My Function From Part 1==
    1 KB (207 words) - 18:48, 25 September 2008
  • == Part A: Unit Impulse Response and System Function == == Part B: Response of the System ==
    1 KB (203 words) - 18:54, 25 September 2008
  • ==Obtain the input impulse response h(t) and the system function H(s) of your system== ==Compute the response of your system to the signal you defined in Question 1 using H(s) and the F
    2 KB (349 words) - 08:25, 26 September 2008
  • =Obtain the input impulse response h[n] and the system function H(z) of your system= So, we have the unit impulse response:
    1 KB (241 words) - 09:04, 26 September 2008
  • The impulse response, h(t), of this system is computed using the following: The response, y(t) = H(jw)*x(t)
    837 B (166 words) - 09:55, 26 September 2008
  • ==Impulse Response== so the impulse response is 7d(t)
    426 B (79 words) - 10:24, 26 September 2008
  • The unit impulse response of this system is: Taking the laplace transform of the unit impulse response of this system gives us:
    910 B (185 words) - 14:36, 26 September 2008
  • Unit Impulse Response: Frequency Response:
    1,016 B (194 words) - 15:50, 26 September 2008
  • unit impulse response then we can can a unit impulse response as
    408 B (77 words) - 14:07, 26 September 2008
  • ==a) Finding the unit impulse response h[n] and the system function F(z).== Therefore the unit impulse response, <big><math>h[n] = 5\delta [n]</math></big>
    1 KB (294 words) - 15:59, 26 September 2008
  • ==Computing the Impulse Response and System Function== Now computing the actual response:
    1 KB (239 words) - 17:50, 26 September 2008
  • ...is the output and <math>x(t)\,</math> is the input, find the unit impulse response <math>h(t)\,</math> and the system function <math>H(s)\,</math>.<br> Then find the response to <math>x(t) = 5cos(3\pi t) + sin(\pi t)\,</math>
    1 KB (208 words) - 15:01, 26 September 2008
  • ==Unit Impulse Response== Well, this is rather straightforward. You want the response to the unit impulse, do ya? Well, if that is what you want, that is what you will get. All you
    2 KB (334 words) - 16:10, 26 September 2008
  • The unit impulse response is then <math>h(t) =3u(t-1)</math> The response of the input <math>x(t)</math> to the system <math>y(t)</math> using <math>
    986 B (178 words) - 16:31, 26 September 2008
  • The unit impulse response of the system would then simply be ...be determined by taking the Laplace Transform of the system's unit impulse response, h(t).
    1 KB (233 words) - 17:43, 26 September 2008
  • ==Unit Impulse Response h(t) and System Function H(s)== ==Response of the Signal and Fourier Series Coefficients==
    1 KB (214 words) - 17:41, 26 September 2008
  • ===Unit Impulse Response=== The unit impulse response of the system is found by substituting <math>\delta(t)</math> for <math>x(t
    1 KB (204 words) - 17:09, 26 September 2008
  • ===The Unit Impulse Response=== ===HW 4.1 Response===
    550 B (110 words) - 17:36, 26 September 2008
  • Obtain the unit impulse response h(t) and the system function H(s)<br><br> Compute the response of the system to the signal using H(s) and the Fourier series coefficients
    905 B (182 words) - 19:11, 26 September 2008
  • Unit Impulse Response This is also the Laplace transform of the impulse response evaulated .
    1 KB (205 words) - 19:22, 26 September 2008
  • Fourier Transforms and the frequency response of a system. The frequency response has a fundamental relationship to the unit step response through Fourier Transforms as follows
    3 KB (449 words) - 17:07, 8 October 2008
  • * An LTI system has unit impulse response h[n] =u[-n]. Compute the system's response to the input <math>x[n] = 2^{n}u[-n].</math> Simplify your answer until all
    725 B (114 words) - 14:31, 10 October 2008
  • An LTI system has unit impulse response <math> h[n] = u[-n] </math> Compute the system's response to the input <math> x[n] = 2^{n}u[-n] </math>
    907 B (154 words) - 10:57, 12 October 2008
  • ...has unit impulse response <math>h[n] = u[-n]</math>. compute the system's response to the
    751 B (125 words) - 11:06, 14 October 2008
  • ...as unit impulse response <math> h[n] = u[-n] </math>. Compute the system's response to the input <math> x[n] = 2^nu[-n] </math>. (simplify your answer until al
    1 KB (189 words) - 07:52, 22 October 2008
  • ...Compute (a) the system's function <math>H(z)</math> and (b) the system's response to the input <math>x[n]=\cos(\pi n)</math>. The response to the input signal <math>z^n</math> is <math>H(z)z^n</math>, giving
    680 B (127 words) - 03:59, 15 October 2008
  • ...tem has unit impulse response <math>h[n]=u[-n]</math> Compute the system's response to the input <math> x[n]=2^{n}u[-n].</math>(Simplify your answer until all
    748 B (146 words) - 10:56, 15 October 2008
  • ...Compute (a) the system's function <math>H(z)</math> and (b) the system's response to the input <math>x[n]=\cos(\pi n)</math>.
    919 B (166 words) - 14:34, 15 October 2008
  • An LTI system has unit impulse response <math>h[n] = u[n] - u[n - 2]\,</math>. b)Use the answer from a) to compute the system's response to the input <math>x[n] = cos(\pi n)\,</math>
    577 B (102 words) - 15:16, 15 October 2008
  • '''Problem 5''' An LTI system has unit impulse response h[n] = u[n] -u[n-2]. b.) Use your answer in a) to compute the system's response to the input x[n] = cos(pi n)
    403 B (78 words) - 15:27, 15 October 2008
  • An LTI system has unit impulse response h[n] = u[n] - u[n-2]. b) the system's response to the input <math>x[n]=\cos(\pi n)</math>.
    568 B (112 words) - 16:14, 15 October 2008
  • An LTI system has unit impulse response h[n]=u[n]-u[n-2]. b) Use your answer in a) to compute the system's response to the input x[n] = cos(<math>\pi</math>n).
    814 B (167 words) - 18:03, 15 October 2008
  • An LTI system has unit impulse response <math>h[n] = u[n] - u[n-2]\,</math>. b) What is the system response to the input <math>x[n]=\cos(\pi n)\,</math>.
    543 B (107 words) - 18:07, 15 October 2008
  • The impulse response of an LTI system is <math>h(t)=e^{-2t}u(t)+u(t+2)-u(t-2)</math>. What is the Frequency response <math>H(j\omega)</math> of the system?
    4 KB (753 words) - 16:48, 23 April 2013
  • ...thcal{F}((a)^n u[n]) = \frac{1}{1-a}, a<0 \,</math>, thus the unit impulse response for <math>\mathcal{X}(\omega)\,</math> is ...is <math> \frac{1}{1-ae^{-j\omega}}, a<1 \,</math>, thus the unit impulse response for <math>\mathcal{X}(\omega)\,</math> is
    11 KB (1,951 words) - 03:48, 25 March 2011
  • ...a})</math>, the unit impulse response <math>\,h[n]</math>, or the system's response to an input <math>\,x[n]</math>.
    4 KB (633 words) - 11:13, 24 October 2008
  • == Frequency Response == Frequency response in CT and DT are very similar. They both have the form of <math>\ Y(\omega)
    2 KB (255 words) - 16:12, 24 October 2008
  • :(b) an ability to determine the impulse response of a differential or difference equation. [1,2;a] :(c) an ability to determine the response of linear systems to any input signal convolution in the time domain. [1,2,
    7 KB (1,017 words) - 10:05, 11 December 2008
  • ...o a system with its impulse response is the same as convolving the impulse response with the input. ...adding the output is the same as convolving the input with the sum of the impulse responses.
    1 KB (190 words) - 21:15, 16 March 2008
  • ...The output is simply the convolution of the input and the system's impulse response.
    821 B (137 words) - 16:22, 20 March 2008
  • ...impulses, we can then apply the 'effect' of the system to each individual impulse of the signal, sum them, and find the resulting output. ...now to find the output of a LTI system is its input and its response to an impulse function'''?
    2 KB (305 words) - 11:17, 24 March 2008
  • Find the frequency response H(|omega|) and the impulse response h[n] of the system. **Frequency Response:**
    1 KB (198 words) - 19:08, 4 April 2008
  • ##[[The unit impulse and unit step functions_Old Kiwi]] ##[[Unit step response of an LTI system_Old Kiwi]]
    4 KB (531 words) - 11:32, 25 July 2008
  • ...se response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's
    956 B (170 words) - 16:23, 3 July 2008
  • ...se response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's
    954 B (175 words) - 16:56, 30 June 2008
  • * Finding System properties of LTI systems from properties of the impulse response
    5 KB (643 words) - 11:55, 6 August 2009

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett