Obtain the input impulse response h(t) and the system function H(s) of your system

A very simple system:

$ y(t)=x(t)\, $ and $ x(t)=\delta(t)\, $

We can get $ h(t)=\delta(t)\, $

$ y(t) = \int^{\infty}_{-\infty} \delta(t) dt\, $

$ H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{-\infty}^{\infty}u(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{0}^{\infty}e^{-s\tau}d\tau $

$ H(s)=-se^{-s\tau}|_0^\infty \, $

$ H(s)=-s(e^{-\infty} - e^{0})\, $

$ H(s)=s\, $

Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal

Signal defined in Question 1: $ x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\, $

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

$ y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\, $

From Question 1: $ x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\, $
With this expression we can conclude:
$ a_1 = 3\, $
$ a_{-1} = 3\, $
$ a_2 = 4\, $
$ a_{-2} = -4\, $

$ x(t) = 3H(s)e^{j2\pi t}+3H(s)e^{-j2\pi t} + 4H(s)e^{j4\pi t}-4H(s)e^{-j4\pi t}\, $

$ x(t) = 3j\omega_0e^{j2\pi t}+3j\omega_0e^{-j2\pi t} + 4j\omega_0e^{j4\pi t}-4j\omega_0e^{-j4\pi t}\, $

$ \omega_0\, $ value as the base frequency is 2

$ x(t) = 6je^{j2\pi t}+6je^{-j2\pi t} + 8je^{j4\pi t}-8je^{-j4\pi t}\, $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn