Loading web-font TeX/Size1/Regular
Revision as of 17:26, 26 February 2015 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Collective Table of Formulas

Indefinite Integrals with hyperbolic cotangent (coth x)

click here for more formulas


28 Integrals of coth ax
$ \int coth ax dx=\dfrac{\ln sh ax}{a} +C $
$ \int coth^{2} ax dx=x-\dfrac{coth ax}{a} +C $
$ \int coth^{3} ax dx=\dfrac{1}{a}\dfrac{\ln sh ax}{a}-\dfrac{coth^{2} ax}{2a} +C $
$ \int\dfrac{coth^{n} ax}{sh^{2} ax} dx=\dfrac{coth^{n+1} ax}{(n+1)a} +C $
$ \int\dfrac{dx}{coth ax sh^{2} ax} dx=\dfrac{1}{a}\ln coth ax +C $
$ \int\dfrac{dx}{coth ax} dx=\dfrac{1}{a}\ln ch ax +C $
$ \int x coth ax dx=\dfrac{1}{a^{2}}\biggl\{ ax+\dfrac{(ax)^{3}}{9}-\dfrac{(ax)^{5}}{225}+\dfrac{2(ax)^{7}}{105}+\cdots\dfrac{(-1)^{n-1}2^{2n}B_{n}(ax)^{2n+1}}{(2n+1)|}\biggl\} +C $
$ \int x coth^{2} ax dx=\dfrac{x^{2}}{2}-\dfrac{x coth ax}{a}+\dfrac{1}{a^{2}}\ln sh ax+C $
$ \int\dfrac{coth ax}{x} dx=\biggl\{-\dfrac{1}{ax}+\dfrac{ax}{3}-\dfrac{(ax)^{3}}{135}+\cdots\dfrac{(-1)^{n-1}2^{2n}B_{n}(ax)^{2n-1}}{(2n-1)(2n)!}\biggl\} +C $
$ \int\dfrac{dx}{p+q coth ax}=\dfrac{px}{p^{2}-q^{2}}-\dfrac{q}{a(p^{2}-q^{2})}\ln(p sh ax+q ch ax) +C $
$ \int coth^{n} ax dx=-\dfrac{coth^{n-1} ax}{a(n-1)}+ \int coth^{n-2} ax dx $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang