Contents
Practice Question, ECE438 Fall 2013, Prof. Boutin
On computing the inverse z-transform of a discrete-time signal.
Compute the inverse z-transform of
$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad |z|>3 $.
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
$ X(z) =\frac{1}{(\frac{3z}{z}-z)(\frac{2z}{z}-z)} \quad $
$ =-\frac{1}{z}\frac{1}{1-\frac{3}{z}}(-\frac{1}{z}\frac{1}{1-\frac{2}{z}}) \quad $
$ =(\sum_{n=0}^{+\infty}-\frac{1}{z}(\frac{3}{z})^n)(\sum_{n=0}^{+\infty}-\frac{1}{z}(\frac{2}{z})^n) $
$ =(-\sum_{n=0}^{+\infty}3^nz^{-n-1})(-\sum_{n=0}^{+\infty}2^nz^{-n-1}) $
$ =(-\sum_{n=-\infty}^{+\infty}3^nu[n]z^{-n-1})(-\sum_{n=-\infty}^{+\infty}2^nu[n]z^{-n-1}) $
Let $ n=k-1 $
$ =(-\sum_{k=-\infty}^{+\infty}3^nu[k-1]z^{-k})(-\sum_{k=-\infty}^{+\infty}2^nu[k-1]z^{-k}) $
By observing that $ X(z) =\sum_{n=-\infty}^{+\infty}x[n]z^{-n} $
$ x[n] =(-3^{n-1}u[n-1])(-2^{n-1}u[n-1]) $
$ =6^{n-1}u[n-1] $
Answer 2
alec green
$ X(z) = \frac{1}{(3-z)(2-z)} = \frac{A}{(3-z)} + \frac{B}{(2-z)} = -\frac{1}{(3-z)} + \frac{1}{(2-z)} $
given the ROC, rewrite as:
$ = -(\frac{-1}{z})(\frac{1}{1-\frac{3}{z}}) + (\frac{-1}{z})(\frac{1}{1-\frac{2}{z}}) = (\frac{1}{z})(\frac{1}{1-\frac{3}{z}}) - (\frac{1}{z})(\frac{1}{1-\frac{2}{z}}) $
$ = \sum_{n=0}^{+\infty}\frac{1}{z}(\frac{3}{z})^{n} - \sum_{n=0}^{+\infty}\frac{1}{z}(\frac{2}{z})^{n} $
$ = \sum_{n=-\infty}^{+\infty}u[n]3^{n}z^{-n-1} - \sum_{n=-\infty}^{+\infty}u[n]2^{n}z^{-n-1} $
Answer 3
Write it here.
Answer 4
Write it here.