Norm and Agrument of a Complex Number (HW1, ECE301, Fall 2008)
For any complex number
- $ z = x + iy\, $
The norm (absolute value) of $ z\, $ is given by ( see important comment on this page regarding using the term "absolute value" only for real numbers)
- $ |z| = \sqrt{x^2+y^2} $
The argument of $ z\, $ is given by
- $ \phi = arctan (y/x)\, $
Conversion from Cartesian to Polar Form
- $ x = r\cos \phi\, $
- $ y = \sin \phi\, $
- $ z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\, $
Back to ECE301 Fall 2008 Prof. Boutin