(Moved over from old Kiwi)
 
Line 1: Line 1:
 +
[[Category:ECE662]]
 +
[[Category:MLE]]
 +
[[Category:parameter estimation]]
 +
[[Category:binomial distribution]]
 +
[[Category:poisson distribution]]
 +
 +
=Examples of Parameter Estimation based on Maximum Likelihood (MLE): the binomial distribution and the poisson distribution=
 +
for [[ECE662:BoutinSpring08_Old_Kiwi|ECE662: Decision Theory]]
 +
----
 +
 
=== Bernoulli Distribution ===
 
=== Bernoulli Distribution ===
  
Line 17: Line 27:
 
<math>\hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n}</math>
 
<math>\hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n}</math>
  
 
+
----
 
=== Poisson Distribution ===
 
=== Poisson Distribution ===
  
Line 31: Line 41:
  
 
<math>\hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}</math>
 
<math>\hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}</math>
 +
----
 +
More examples: [[MLE_Examples:_Exponential_and_Geometric_Distributions_Old_Kiwi|Exponential and Geometric Distributions]]
 +
 +
Back to [[Lecture_7_Old_Kiwi|Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"]]
 +
 +
Back to [[ECE662:BoutinSpring08_Old_Kiwi|ECE662, Spring 2008, Prof. Boutin]]

Revision as of 04:53, 5 March 2013


Examples of Parameter Estimation based on Maximum Likelihood (MLE): the binomial distribution and the poisson distribution

for ECE662: Decision Theory


Bernoulli Distribution

Observations: k successes in n Bernoulli trials.

$ f(x)=\left(\frac{n!}{x!\left(n-x \right)!} \right){p}^{x}{\left(1-p \right)}^{n-x} $

$ L(p)=\prod_{i=1}^{n}f({x}_{i})=\prod_{i=1}^{n}\left(\frac{n!}{{x}_{i}!\left(n-{x}_{i} \right)!} \right){p}^{{x}_{i}}{\left(1-p \right)}^{n-{x}_{i}} $

$ L(p)=\left( \prod_{i=1}^{n}\left(\frac{n!}{{x}_{i}!\left(n-{x}_{i} \right)!} \right)\right){p}^{\sum_{i=1}^{n}{x}_{i}}{\left(1-p \right)}^{n-\sum_{i=1}^{n}{x}_{i}} $

$ lnL(p)=\sum_{i=1}^{n}{x}_{i}ln(p)+\left(n-\sum_{i=1}^{n}{x}_{i} \right)ln\left(1-p \right) $

$ \frac{dlnL(p)}{dp}=\frac{1}{p}\sum_{i=1}^{n}{x}_{i}+\frac{1}{1-p}\left(n-\sum_{i=1}^{n}{x}_{i} \right)=0 $

$ \left(1-\hat{p}\right)\sum_{i=1}^{n}{x}_{i}+p\left(n-\sum_{i=1}^{n}{x}_{i} \right)=0 $

$ \hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n} $


Poisson Distribution

Observations: $ {X}_{1}, {X}_{2}, {X}_{3}.....{X}_{n} $

$ f(x)=\frac{{\lambda}^{x}{e}^{-\lambda}}{x!} x=0, 1, 2, $...

$ L(\lambda)=\prod_{i=1}^{n}\frac{{\lambda}^{{x}_{i}}{e}^{-\lambda}}{{x}_{i}!} = {e}^{-n\lambda} \frac{{\lambda}^{\sum_{1}^{n}{x}_{i}}}{\prod_{i=1}^{n}{x}_{i}} $

$ lnL(\lambda)=-n\lambda+\sum_{1}^{n}{x}_{i}ln(\lambda)-ln\left(\prod_{i=1}^{n}{x}_{i}\right) $

$ \frac{dlnL(\lambda)}{dp}=-n+\sum_{1}^{n}{x}_{i}\frac{1}{\lambda} $

$ \hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n} $


More examples: Exponential and Geometric Distributions

Back to Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"

Back to ECE662, Spring 2008, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang