Line 1: | Line 1: | ||
− | <div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: | + | <div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: center; width: 70%; margin: auto; border: 1px solid #aaa; padding: 1em; text-align:center;"> |
{| | {| | ||
|- | |- | ||
− | |''' | + | | |
− | | [[Image: | + | '''This [[Collective Table of Formulas|Collective table of formulas]] is proudly sponsored'''<br> '''by the [http://www.facebook.com/hkn.beta Nice Guys of Eta Kappa Nu].''' <br><br> Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each! |
− | + | ||
+ | | [[Image:HKNlogo.jpg]] | ||
|} | |} | ||
− | </div> | + | </div> |
− | + | ||
{| | {| |
Revision as of 06:19, 5 April 2012
This Collective table of formulas is proudly sponsored |
Trigonometric Identities | |
---|---|
Basic Definitions | |
Definition of tangent | $ \tan \theta = \frac{\sin \theta}{\cos\theta} $ |
Definition of cotangent | $ \cot \theta = \frac{\cos \theta}{\sin\theta} \ $ credit |
Definition of secant | $ \sec \theta = \frac{1}{\cos \theta} \ $ |
Definition of cosecant | $ \csc \theta = \frac{1}{\sin \theta} \ $ |
Definition of versed sine (versine) | $ \text{versin } \theta = 1- \cos \theta \ $ |
Definition of versed cosine (versine) | $ \text{vercosin } \theta = 1+ \cos \theta \ $ |
Definition of coversed sine (coversine) | $ \text{coversin } \theta = \text{cvs } \theta = 1- \sin \theta \ $ |
Definition of coversed cosine (covercosine) | $ \text{covercosin } \theta = 1+ \sin \theta \ $ |
Definition of haversed sine (haversine) | $ \text{haversin } \theta = \frac{1- \cos \theta}{2} $ |
Definition of haversed cosine (havercosine) | $ \text{havercosin } \theta = \frac{1+ \cos \theta}{2} $ |
Definition of hacoversed sine (hacoversin) | $ \text{hacoversin } \theta = \frac{1 - \sin \theta}{2} $ |
Definition of hacoversed cosine (hacovercosin) | $ \text{hacovercosin } \theta = \frac{1 + \sin \theta}{2} $ |
Definition of exterior secant (exsec) | $ \text{exsec } \theta = \sec \theta - 1 \ $ |
Definition of exterior cosecant (excosec) | $ \text{excosec } \theta = \csc \theta - 1 \ $ |
Definition of chord (crd) | $ \text{crd } \theta = 2 \sin(\frac{\theta}{2}) $ |
Pythagorean identity and other related identities | |
Pythagorean identity | $ \cos^2 \theta+\sin^2 \theta =1 \ $ |
$ \sin^2 \theta = 1-\cos^2 \theta \ $ | |
$ \cos^2 \theta = 1-\sin^2 \theta \ $ | |
$ \sec^2 \theta = 1+\tan^2 \theta \ $ | |
$ \csc^2 \theta = 1+\cot^2 \theta \ $ | |
please continue | place formula here |
Half-Angle Formulas | |
Half-angle for sine | $ \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1-\cos \theta}{2} } \ $ |
Half-angle for cosine | $ \cos \frac{\theta}{2} = \pm \sqrt{ \frac{1+\cos \theta}{2} } \ $ |
Half-angle for tangent | $ \tan \frac{\theta}{2} = \csc \theta - \cot \theta \ $ |
Half-angle for tangent | $ \tan \frac{\theta}{2} =\pm\sqrt{\frac{1-\cos \theta}{ 1+\cos \theta }} \ $ |
Half-angle for tangent | $ \tan \frac{\theta}{2} =\frac{\sin \theta}{ 1+\cos \theta } \ $ |
Half-angle for tangent | $ \tan \frac{\theta}{2} =\frac{1-\cos \theta}{ \sin \theta } \ $ |
Half-angle for cotangent | $ \cot \frac{\theta}{2} = \csc \theta + \cot \theta $ |
Half-angle for cotangent | $ \cot \frac{\theta}{2} = \frac{1 + \cos \theta}{\sin \theta} $ |
Half-angle for cotangent | $ \cot \frac{\theta}{2} = \pm \sqrt{1 + \cos \theta \over 1 - \cos \theta} $ |
Half-angle for cotangent | $ \cot \frac{\theta}{2} = \frac{\sin \theta}{1 - \cos \theta} $ |
Double-Angle Formulas | |
double-angle for sine | $ \sin 2 \theta = 2 \sin \theta \cos \theta \ $ credit |
double-angle for sine | $ \sin 2 \theta = \frac{ 2 \tan \theta}{1+ \tan^2 \theta } \ $ |
double-angle for cosine | $ \cos 2 \theta =\cos^2 \theta - \sin^2 \theta \ $ |
double-angle for cosine | $ \cos 2 \theta =2 \cos^2 \theta - 1 \ $ |
double-angle for cosine | $ \cos 2 \theta =1- 2 \sin^2 \theta \ $ |
double-angle for cosine | $ \cos 2 \theta =\frac{1- \tan^2 \theta}{ 1+\tan^2 \theta } \ $ |
double-angle for tangent | $ \tan 2\theta = \frac{2 \tan \theta} {1 - \tan^2 \theta}\, $ |
double-angle for cotangent | $ \cot 2\theta = \frac{\cot^2 \theta - 1}{2 \cot \theta}\, $ |
Triple-Angle Formulas | |
triple-angle for sine | $ \begin{align}\sin 3\theta & = 3 \cos^2\theta \sin\theta - \sin^3\theta \\ & = 3\sin\theta - 4\sin^3\theta \end{align} $ |
triple-angle for cosine | $ \begin{align}\cos 3\theta & = \cos^3\theta - 3 \sin^2 \theta\cos \theta \\ & = 4 \cos^3\theta - 3 \cos\theta\end{align} $ |
triple-angle for tangent | $ \tan 3\theta = \frac{3 \tan\theta - \tan^3\theta}{1 - 3 \tan^2\theta} $ |
tripe-angle for cotangent | $ \cot 3\theta = \frac{3 \cot\theta - \cot^3\theta}{1 - 3 \cot^2\theta} $ |
Angle sum and difference identities | |
Sine | $ \sin \left( \theta\pm \alpha \right)=\sin \theta \cos \alpha \pm \cos \theta \sin \alpha $ |
Cosine | $ \cos \left(\theta\pm \alpha \right)= \cos \theta \cos \alpha \mp \sin \theta \sin \alpha $ |
Tangent | $ \tan \left(\theta\pm \alpha \right)= \frac {\tan \theta \pm \tan \alpha}{1 \mp \tan \theta \tan \alpha} $ |
Arcsine | $ \arcsin\alpha \pm \arcsin\beta = \arcsin(\alpha\sqrt{1-\beta^2} \pm \beta\sqrt{1-\alpha^2}) $ |
Arccosine | $ \arccos\alpha \pm \arccos\beta = \arccos(\alpha\beta \mp \sqrt{(1-\alpha^2)(1-\beta^2)}) $ |
Arctangent | $ \arctan\alpha \pm \arctan\beta = \arctan\left(\frac{\alpha \pm \beta}{1 \mp \alpha\beta}\right) $ |