Line 6: Line 6:
 
</font size>
 
</font size>
  
'''General Rules'''
+
'''General Rules for [[Table_of_indefinite_integrals|Indefinite Integrals]] '''
  
 
click [[Collective_Table_of_Formulas|here]] for [[Collective_Table_of_Formulas|more formulas]]
 
click [[Collective_Table_of_Formulas|here]] for [[Collective_Table_of_Formulas|more formulas]]

Latest revision as of 18:13, 26 February 2015


Collective Table of Formulas

General Rules for Indefinite Integrals

click here for more formulas


$ \int a d x = a x +C $
$ \int a f ( x ) d x = a \int f ( x ) d x $
$ \int ( u \pm v \pm w \pm \cdot \cdot \cdot ) d x = \int u d x \pm \int v d x \pm \int w d x \pm \cdot \cdot \cdot $
$ \int u d v = u v - \int v d u $
$ \int f ( a x ) d x = \frac{1}{a} \int f ( u ) d u $
$ \int F \{ f ( x ) \} d x = \int F ( u ) \frac{dx}{du} d u = \int \frac{F ( u )}{f^{'} ( x )} d u \qquad u = f ( x ) $
$ \int u^n d u = \frac{u^{n+1}}{n+1} +C \qquad n \neq -1 $
$ \int \frac{d u}{u} = \ln u+C \ ( if \ u > 0 ) \ \text{or} \ln {-u}+C \ ( \text{if} \ u < 0 ) = \ln \left | u \right | $
$ \int e^u d u = e^u +C $
$ \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ \text{and} \ a \neq 1 $
$ \int \sin u\ d u = - \cos u +C $
$ \int \cos u\ d u = \sin u +C $
$ \int \tan u\ d u = - \ln {\cos u} +C $
$ \int \cot u\ d u = \ln {\sin u} +C $
$ \int \frac{d u}{\cos u} = \ln { \left ( \frac{1}{\cos u} + \tan u \right )} +C = \ln{\tan {\left ( \frac{u}{2}+\frac{\pi}{4}\right )}} +C $
$ \int \frac{d u}{\sin u} = \ln { \left ( \frac{1}{\sin u} - \cot u \right )} +C = \ln{\tan { \frac{u}{2}}} +C $
$ \int \frac{d u}{\cos ^2 u} = \tan u +C $
$ \int \frac{d u}{\sin ^2 u} = - \cot u +C $
$ \int \tan ^2 u \ d u = \tan u - u+C $
$ \int \cot ^2 u \ d u = - \cot u - u+C $
$ \int \sin ^2 u \ d u= \frac{u}{2} - \frac{\sin {2 u}}{4} +C = \frac{1}{2}\left( u - \sin u \cos u \right )+C $
$ \int \frac {1}{\cos u} \tan u \ d u = \frac{1}{\cos u}+C $
$ \int \frac {1}{\sin u} \cot u \ d u = - \frac{1}{\sin u}+C $
$ \int \sinh u \ d u = \coth u+C $
$ \int \cosh u \ d u = \sinh u+C $
$ \int \tanh u \ d u = \ln \cosh u+C $
$ \int \coth u \ d u = \ln \sinh u+C $
$ \int \frac {1}{\operatorname{ch}\ u} \ d u = \arcsin{\left ( \operatorname{th}\,u \right )}+C \qquad or \ 2 arc \ th \ e^u+C $
$ \int \frac {1}{\operatorname{sh}\ u} \ d u = \ln \operatorname{th}\,\frac{2}{2}+C \qquad or \ - \operatorname{Arg coth} \ e^u+C $
$ \int \frac {1}{\operatorname{ch^2}\ u} \ d u = \operatorname{th}\,u $
$ \int \frac {1}{\operatorname{sh^2}\ u} \ d u = - \operatorname{coth}\,u $
$ \int \operatorname{th^2}\ u \ d u = u - \operatorname{th}\,u $
$ \int \operatorname{coth^2}\ u \ d u = u - \operatorname{coth}\,u $
$ \int \operatorname{sh^2}\ u \ d u = \frac {\operatorname{sh}\,{2 u}}{4} - \frac{u}{2}=\frac{1}{2}\left ( \operatorname{sh}\,u \ \operatorname{ch}\,u - u \right ) $
$ \int \operatorname{ch^2}\ u \ d u = \frac {\operatorname{sh}\,{2 u}}{4} + \frac{u}{2}=\frac{1}{2}\left ( \operatorname{sh}\,u \ \operatorname{ch}\,u + u \right ) $
$ \int \frac{\operatorname th \ u}{\operatorname ch \ u} \ d u = - \frac {1}{\operatorname ch \, u } $
$ \int \frac{\operatorname coth \ u}{\operatorname sh \ u} \ d u = - \frac {1}{\operatorname sh \, u } $
$ \int \frac{d u}{u^2 + a^2} = \frac {1}{a}\arctan \frac{u}{a} $
$ \int \frac{d u}{u^2 - a^2} = \frac {1}{2 a}\ln \left ( \frac{u-a}{u+a} \right ) = -\frac{1}{a} \operatorname{argcoth} \ \frac{u}{a} \qquad u^2 > a^2 $
$ \int \frac{d u}{a^2 - u^2} = \frac {1}{2 a}\ln \left ( \frac{a+u}{a-u} \right ) = \frac{1}{a} \operatorname{argth}\ \frac{u}{a} \qquad u^2 < a^2 $
$ \int \frac{d u}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} $
$ \int \frac{d u}{\sqrt{u^2 + a^2}} = \ln { \left ( u + \sqrt {u^2+a^2} \right ) } \qquad or \ \operatorname{argth} \ \frac{u}{a} $
$ \int \frac{d u}{\sqrt{u^2 - a^2}} = \ln { \left ( u + \sqrt {u^2-a^2} \right ) } $
$ \int \frac{d u}{u \sqrt{u^2 - a^2}} = \frac {1}{a} \arccos \left | \frac{a}{u} \right | $
$ \int \frac{d u}{u \sqrt{u^2 + a^2}} = - \frac {1}{a} \ln \left ( \frac{a + \sqrt{u^2 + a^2}}{u} \right ) $
$ \int \frac{d u}{u \sqrt{a^2 - u^2}} = - \frac {1}{a} \ln \left ( \frac{a + \sqrt{a^2 - u^2}}{u} \right ) $
$ \int f^{(n)} \ g d x =f^{(n-1)} \ g - f^{(n-2)} \ g' + f^{(n-3)} \ g'' - \cdot \cdot \cdot \ (-1)^n \int fg^{(n)} d x $

Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang