Line 20: | Line 20: | ||
*Statistical Density Theory Context | *Statistical Density Theory Context | ||
**Given c classes + some knowledge about features <math>x \in \mathbb{R}^n</math> (or some other space) | **Given c classes + some knowledge about features <math>x \in \mathbb{R}^n</math> (or some other space) | ||
− | + | **Given training data, <math>x_j\sim\rho(x)=\sum\limits_{i=1}^n\rho(x|w_i) Prob(w_i), unknown class w_{ij} for x_j is know, \forall{j}=1,...,N</math> (N hopefully large enough) | |
Revision as of 21:03, 5 May 2014
Expected Value of MLE estimate over standard deviation and expected deviation
A slecture by ECE student Zhenpeng Zhao
Partly based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.
1. Motivation
- Most likely converge as number of number of training sample increase.
- Simpler than alternate methods such as Bayesian technique.
2. Motivation
- Statistical Density Theory Context
- Given c classes + some knowledge about features $ x \in \mathbb{R}^n $ (or some other space)
- Given training data, $ x_j\sim\rho(x)=\sum\limits_{i=1}^n\rho(x|w_i) Prob(w_i), unknown class w_{ij} for x_j is know, \forall{j}=1,...,N $ (N hopefully large enough)
(create a question page and put a link below)
Questions and comments
If you have any questions, comments, etc. please post them on https://kiwi.ecn.purdue.edu/rhea/index.php/ECE662Selecture_ZHenpengMLE_Ques.