Line 11: Line 11:
 
= Discrete Fourier Transform =
 
= Discrete Fourier Transform =
 
Please help building this page!
 
Please help building this page!
*Let's try to follow the same table syntax as for [[CT_Fourier_Transform_(frequency_in_hertz)|this table]]
 
 
*You can copy and paste the formulas from these pages:
 
*You can copy and paste the formulas from these pages:
 
**[[Student_summary_Discrete_Fourier_transform_ECE438F09]]
 
**[[Student_summary_Discrete_Fourier_transform_ECE438F09]]
Line 34: Line 33:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math> x[n] \  </math>
+
| <math> x[n] \  \text{ (period } N) </math>
 
| <math>\longrightarrow</math>
 
| <math>\longrightarrow</math>
| <math> X[k] \  </math>
+
| <math> X[k] \  \  \text{ (period } N) </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |   
 
| align="right" style="padding-right: 1em;" |   
| <math>\ \delta[n] </math>  
+
| <math>\ \sum_{k=-\infty}^\infty \delta[n+Nk] </math>  
 
|  
 
|  
| <math>\ 1 </math>
+
| <math>\ 1 \text{ (period } N) </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| <math>\ 1 </math>  
+
| <math>\ 1 \text{ (period } N) </math>  
 
|  
 
|  
 
| <math>\ N\delta[k] </math>
 
| <math>\ N\delta[k] </math>
Line 110: Line 109:
  
 
[[Category:Formulas]]
 
[[Category:Formulas]]
 +
[[Category:discrete Fourier transform]]

Revision as of 14:43, 27 November 2011

If you enjoy using this collective table of formulas, please consider donating to Project Rhea or becoming a sponsor. DonateNow.png


Discrete Fourier Transform

Please help building this page!

Discrete Fourier Transform Pairs and Properties (info)
Definition CT Fourier Transform and its Inverse
Discrete Fourier Transform $ X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, $
Inverse Discrete Fourier Transform $ \,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \, $
Discrete Fourier Transform Pairs (info)
$ x[n] \ \text{ (period } N) $ $ \longrightarrow $ $ X[k] \ \ \text{ (period } N) $
$ \ \sum_{k=-\infty}^\infty \delta[n+Nk] $ $ \ 1 \text{ (period } N) $
$ \ 1 \text{ (period } N) $ $ \ N\delta[k] $
$ \ e^{j2\pi k_0 n} $ $ \ N\delta[((k - k_0))_N] $
$ \ \cos(\frac{2\pi}{N}k_0n) $ $ \ \frac{N}{2}(\delta[((k - k_0))_N] + \delta[((k+k_0))_N]) $
Discrete Fourier Transform Properties
$ x[n] \ $ $ \longrightarrow $ $ X[k] \ $
Linearity $ ax[n]+by[n] \ $ $ aX[k]+bY[k] \ $
Circular Shift $ x[((n-m))_N] \ $ $ X[k]e^{(-j\frac{2 \pi}{N}km)} \ $
Duality $ X[n] \ $ $ NX[((-k))_N] \ $
Multiplication $ x[n]y[n] \ $ $ \frac{1}{N} X[k]\circledast Y[k], \ \circledast \text{ denotes the circular convolution} $
Convolution $ x(t) \circledast y(t) \ $ $ X[k]Y[k] \ $
time reversal $ \ x(-t) $ $ \ X(-f) $
Other Discrete Fourier Transform Properties
Parseval's Theorem $ \sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^2 $

Back to Collective Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva