Line 15: Line 15:
 
===Answer 1===
 
===Answer 1===
  
By Euler's formular
+
By [[More_on_Eulers_formula|Euler's formula]]
  
 
<math> e^{j \omega}  = cos( \omega) + i*sin( \omega) </math>
 
<math> e^{j \omega}  = cos( \omega) + i*sin( \omega) </math>
Line 24: Line 24:
  
 
:<span style="color:green">TA's comments: Is this true for all <math>\omega \in R</math>? The answer is yes.</span>
 
:<span style="color:green">TA's comments: Is this true for all <math>\omega \in R</math>? The answer is yes.</span>
 +
 +
:<span style="color:purple">Instructor's comment: I would like to propose a more straightforward way to compute this norm using the fact that <math>|z|^2=z \bar{z}</math>. Can you try it out? -pm </span>
 +
  
 
===Answer 2===
 
===Answer 2===
Line 30: Line 33:
 
<math>| e^{j \omega}|=|cos(\omega) + i*sin(\omega)|=\sqrt{cos(\omega)^2 +sin(\omega)^2}=1</math>
 
<math>| e^{j \omega}|=|cos(\omega) + i*sin(\omega)|=\sqrt{cos(\omega)^2 +sin(\omega)^2}=1</math>
  
:<span style="color:green">TA's comments: The point here is to use Euler's formula to write a complex exponential as a complex number. Then the norm(magnitude) and angle(phase) of this complex number can be easily computed.</span>
+
:<span style="color:green">TA's comments: The point here is to use [[More_on_Eulers_formula|Euler's formula]] to write a complex exponential as a complex number. Then the norm(magnitude) and angle(phase) of this complex number can be easily computed.</span>
 +
 
 +
:<span style="color:purple">Instructor's comment: Again, I would argue that using the fact that <math>|z|^2=z \bar{z}</math> is more straightforward. Can you try it out? -pm </span>
  
 
===Answer 3===
 
===Answer 3===
Line 38: Line 43:
 
<math>\left| e^{j \omega} \right| =  \left|cos( \omega) + i*sin( \omega) \right| = \sqrt{cos^2( \omega) + sin^2( \omega)} = 1 </math>
 
<math>\left| e^{j \omega} \right| =  \left|cos( \omega) + i*sin( \omega) \right| = \sqrt{cos^2( \omega) + sin^2( \omega)} = 1 </math>
  
 +
:<span style="color:purple">Instructor's comment: Can you think of a way to compute this norm without using [[More_on_Eulers_formula|Euler's formula]]? -pm </span>
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
  
 
[[ECE301|Back to ECE438]]
 
[[ECE301|Back to ECE438]]

Revision as of 05:15, 23 September 2011

What is the norm of a complex exponential?

After class today, a student asked me the following question:

$ \left| e^{j \omega} \right| = ? $

Please help answer this question.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

By Euler's formula

$ e^{j \omega} = cos( \omega) + i*sin( \omega) $

hence,

$ \left| e^{j \omega} \right| = \left|cos( \omega) + i*sin( \omega) \right| = \sqrt{cos^2( \omega) + sin^2( \omega)} = 1 $

TA's comments: Is this true for all $ \omega \in R $? The answer is yes.
Instructor's comment: I would like to propose a more straightforward way to compute this norm using the fact that $ |z|^2=z \bar{z} $. Can you try it out? -pm


Answer 2

becasue: $ e^{jx} =cos(x)+ jsin(x) $

$ | e^{j \omega}|=|cos(\omega) + i*sin(\omega)|=\sqrt{cos(\omega)^2 +sin(\omega)^2}=1 $

TA's comments: The point here is to use Euler's formula to write a complex exponential as a complex number. Then the norm(magnitude) and angle(phase) of this complex number can be easily computed.
Instructor's comment: Again, I would argue that using the fact that $ |z|^2=z \bar{z} $ is more straightforward. Can you try it out? -pm

Answer 3

$ e^{j \omega} = cos( \omega) + i*sin( \omega) $


$ \left| e^{j \omega} \right| = \left|cos( \omega) + i*sin( \omega) \right| = \sqrt{cos^2( \omega) + sin^2( \omega)} = 1 $

Instructor's comment: Can you think of a way to compute this norm without using Euler's formula? -pm

Back to ECE438 Fall 2011 Prof. Boutin

Back to ECE438

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang