(One intermediate revision by the same user not shown)
Line 22: Line 22:
 
----
 
----
 
==Question==
 
==Question==
'''Part 1. '''
+
'''1'''
 +
 
 +
Let <math class="inline">\mathbf{U}_{n}</math>  be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence <math class="inline">\mathbf{X}_{n}</math> , <math class="inline">n\geq1</math> , is given by <math class="inline">\mathbf{X}_{n}=\frac{1}{2}\mathbf{U}_{n}+\left(\frac{1}{2}\right)^{2}\mathbf{U}_{n-1}+\cdots+\left(\frac{1}{2}\right)^{n}\mathbf{U}_{1}.</math>
 +
 
 +
'''(a) (15 points)'''
 +
 
 +
Find the mean and variance of <math class="inline">\mathbf{X}_{n}</math> .
 +
 
 +
'''(b) (15 points)'''
 +
 
 +
Find the characteristic function of <math class="inline">\mathbf{X}_{n}</math> .
 +
 
 +
'''(c) (10 points)'''
 +
 
 +
Does the sequence <math class="inline">\mathbf{X}_{n}</math>  converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.
  
Write Statement here
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.1|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.1|answers and discussions]]'''
 
----
 
----
'''Part 2.'''
+
'''2'''
 +
 
 +
Let <math class="inline">\Phi</math>  be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let <math class="inline">\mathbf{X}</math>  be a normal random variable with mean <math class="inline">\mu</math>  and variance 1 . We want to find <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]</math> .
 +
 
 +
'''(a) (10 points)'''
 +
 
 +
First show that <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\mathbf{Z}\leq\mathbf{X}\right)</math> , where <math class="inline">\mathbf{Z}</math>  is a standard normal random variable independent of <math class="inline">\mathbf{X}</math> . Hint: Use an intermediate random variable <math class="inline">\mathbf{I}</math>  defined as
 +
 
 +
 
 +
'''(b) (10 points)'''
 +
 
 +
Now use the result from Part (a) to show that <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]=\Phi\left(\frac{\mu}{\sqrt{2}}\right)</math> .
  
Write question here.
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.2|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.2|answers and discussions]]'''
 
----
 
----
'''Part 3.'''
+
'''3 (15 points)'''
 +
 
 +
Let <math class="inline">\mathbf{Y}(t)</math>  be the output of linear system with impulse response <math class="inline">h\left(t\right)</math>  and input <math class="inline">\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right)</math> , where <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{N}\left(t\right)</math>  are jointly wide-sense stationary independent random processes. If <math class="inline">\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right)</math> , find the power spectral density <math class="inline">S_{\mathbf{Z}}\left(\omega\right)</math>  in terms of <math class="inline">S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right]</math> , and <math class="inline">m_{\mathbf{Y}}=E\left[\mathbf{Y}\right]</math> .
  
Write question here.
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.3|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.3|answers and discussions]]'''
 
----
 
----
'''Part 4.'''
+
'''4'''
 +
 
 +
Suppose customer orders arrive according to an i.i.d.  Bernoulli random process <math class="inline">\mathbf{X}_{n}</math>  with parameter <math class="inline">p</math> . Thus, an order arrives at time index <math class="inline">n</math>  (i.e., <math class="inline">\mathbf{X}_{n}=1</math> ) with probability <math class="inline">p</math> ; if an order does not arrive at time index <math class="inline">n</math> , then <math class="inline">\mathbf{X}_{n}=0</math> . When an order arrives, its size is an exponential random variable with parameter <math class="inline">\lambda</math> . Let <math class="inline">\mathbf{S}_{n}</math>  be the total size of all orders up to time <math class="inline">n</math> .
 +
 
 +
'''(a) (20 points)'''
 +
 
 +
Find the mean and autocorrelation function of <math class="inline">\mathbf{S}_{n}</math> .
 +
 
 +
'''(b) (5 points)'''
 +
 
 +
Is <math class="inline">\mathbf{S}_{n}</math>  a stationary random process? Explain.
  
Write question here.
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.4|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.4|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 10:35, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2006



Question

1

Let $ \mathbf{U}_{n} $ be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence $ \mathbf{X}_{n} $ , $ n\geq1 $ , is given by $ \mathbf{X}_{n}=\frac{1}{2}\mathbf{U}_{n}+\left(\frac{1}{2}\right)^{2}\mathbf{U}_{n-1}+\cdots+\left(\frac{1}{2}\right)^{n}\mathbf{U}_{1}. $

(a) (15 points)

Find the mean and variance of $ \mathbf{X}_{n} $ .

(b) (15 points)

Find the characteristic function of $ \mathbf{X}_{n} $ .

(c) (10 points)

Does the sequence $ \mathbf{X}_{n} $ converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.


Click here to view student answers and discussions

2

Let $ \Phi $ be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let $ \mathbf{X} $ be a normal random variable with mean $ \mu $ and variance 1 . We want to find $ E\left[\Phi\left(\mathbf{X}\right)\right] $ .

(a) (10 points)

First show that $ E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\mathbf{Z}\leq\mathbf{X}\right) $ , where $ \mathbf{Z} $ is a standard normal random variable independent of $ \mathbf{X} $ . Hint: Use an intermediate random variable $ \mathbf{I} $ defined as


(b) (10 points)

Now use the result from Part (a) to show that $ E\left[\Phi\left(\mathbf{X}\right)\right]=\Phi\left(\frac{\mu}{\sqrt{2}}\right) $ .


Click here to view student answers and discussions

3 (15 points)

Let $ \mathbf{Y}(t) $ be the output of linear system with impulse response $ h\left(t\right) $ and input $ \mathbf{X}\left(t\right)+\mathbf{N}\left(t\right) $ , where $ \mathbf{X}\left(t\right) $ and $ \mathbf{N}\left(t\right) $ are jointly wide-sense stationary independent random processes. If $ \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right) $ , find the power spectral density $ S_{\mathbf{Z}}\left(\omega\right) $ in terms of $ S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right] $ , and $ m_{\mathbf{Y}}=E\left[\mathbf{Y}\right] $ .


Click here to view student answers and discussions

4

Suppose customer orders arrive according to an i.i.d. Bernoulli random process $ \mathbf{X}_{n} $ with parameter $ p $ . Thus, an order arrives at time index $ n $ (i.e., $ \mathbf{X}_{n}=1 $ ) with probability $ p $ ; if an order does not arrive at time index $ n $ , then $ \mathbf{X}_{n}=0 $ . When an order arrives, its size is an exponential random variable with parameter $ \lambda $ . Let $ \mathbf{S}_{n} $ be the total size of all orders up to time $ n $ .

(a) (20 points)

Find the mean and autocorrelation function of $ \mathbf{S}_{n} $ .

(b) (5 points)

Is $ \mathbf{S}_{n} $ a stationary random process? Explain.


Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal