ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2006



4

Suppose customer orders arrive according to an i.i.d. Bernoulli random process $ \mathbf{X}_{n} $ with parameter $ p $ . Thus, an order arrives at time index $ n $ (i.e., $ \mathbf{X}_{n}=1 $ ) with probability $ p $ ; if an order does not arrive at time index $ n $ , then $ \mathbf{X}_{n}=0 $ . When an order arrives, its size is an exponential random variable with parameter $ \lambda $ . Let $ \mathbf{S}_{n} $ be the total size of all orders up to time $ n $ .

(a) (20 points)

Find the mean and autocorrelation function of $ \mathbf{S}_{n} $ .

Let $ \mathbf{Y}_{n} $ be the size of an order at time index $ n $ , then $ \mathbf{Y}_{n} $ is a sequence of i.i.d. exponential random variables.

$ \mathbf{S}_{n}=\sum_{k=1}^{n}\mathbf{X}_{n}\mathbf{Y}_{n}. $

$ E\left[\mathbf{S}_{n}\right]=\sum_{k=1}^{n}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{Y}_{n}\right]=\sum_{k=1}^{n}p\cdot\frac{1}{\lambda}=\frac{np}{\lambda}. $

$ R_{\mathbf{S}}\left(n,m\right)=E\left[\mathbf{S}_{n}\mathbf{S}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{X}_{m}\right]E\left[\mathbf{Y}_{n}\right]E\left[\mathbf{Y}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}\frac{p^{2}}{\lambda^{2}}=nm\frac{p^{2}}{\lambda^{2}}. $

(b) (5 points)

Is $ \mathbf{S}_{n} $ a stationary random process? Explain.

• Approach 1: $ \mathbf{S}_{n} $ is not a stationary random process since $ R_{\mathbf{S}}\left(n,m\right) $ does not depend on only $ m-n $ .

• Approach 2: $ \mathbf{S}_{n} $ is not a stationary random process since $ E\left[\mathbf{S}_{n}\right] $ is not constant.


Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett