Line 1: Line 1:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
= [[:Category:Problem_solving|Practice Question]] 5, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
 
Filter Design
 
  
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 +
Topic: Filter Design
 +
 +
</center>
 +
([[:Category:Problem_solving|Practice Question]] 5, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] )
 
----
 
----
 +
==Question==
 
Define a two-pole band-pass filter such that
 
Define a two-pole band-pass filter such that
 
#The center of its band-pass is at <math>\omega=\pi/2 </math>.
 
#The center of its band-pass is at <math>\omega=\pi/2 </math>.
Line 51: Line 58:
 
----
 
----
 
[[Practice_Question_4_ECE438F10|Previous practice problem]]
 
[[Practice_Question_4_ECE438F10|Previous practice problem]]
 
[[Practice_Question_6_ECE438F10|Next practice problem]]
 
  
 
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]]  
 
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]]  
  
 
[[Category:2010_Fall_ECE_438_Boutin]]
 
[[Category:2010_Fall_ECE_438_Boutin]]

Latest revision as of 13:00, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Filter Design

(Practice Question 5, ECE438 Fall 2010, Prof. Boutin )


Question

Define a two-pole band-pass filter such that

  1. The center of its band-pass is at $ \omega=\pi/2 $.
  2. There is no gain at the center of its band-pass
  3. The filter has a zero frequency response at $ \omega=0 $ and $ \omega=\pi $.

Express the system using a constant coefficient difference equation.


Post Your answer/questions below.

  • Transfer function

$ H(z) = \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})}, \text{where } p_1 \text{and } p_2 \text{ are poles of the filter.} $

In order for the filter's impulse response to be real-valued, the two poles must be complex conjugates. So we assume that:

  • $ p_1 = re^{j\theta} $
  • $ p_2 = re^{-j\theta} $

So

$ \begin{align} H(z) &= \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})} \\ &= \frac{1}{(1-re^{j\theta}z^{-1})(1-re^{-j\theta}z^{-1})} \\ &= \frac{1}{1-2rcos(\theta)z^{-1}+r^2z^{-2}} \end{align} $

Then the frequency response of the filter is

$ H(e^{j\omega}) = \frac{1}{1-2rcos(\theta)e^{-j\omega}+r^2e^{-j2\omega}} $

Constant input gain is zero.

$ H(e^{j\omega})|_{\omega=\frac{\pi}{2}} = \frac{1}{1-2rcos(\theta)+r^2} = 1 $(*)

Filter has zero frequency response at $ \omega = 0,\pi $

$ H(e^{j\omega})|_{\omega=0} = \frac{1}{1-2rcos(\theta)+r^2} = 0 $

$ H(e^{j\omega})|_{\omega=\pi} = \frac{1}{1+2rcos(\theta)-r^2} = 0 $

I am unsure if this is correct way to tackle this problem. I don't wish to continue until the posted steps have been verified. Thanks!


  • Answer/question
  • Answer/question
  • Answer/question

Previous practice problem

Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang