(9 intermediate revisions by one other user not shown)
Line 10: Line 10:
  
 
         <math>\vdots</math>                  <math>\vdots</math>
 
         <math>\vdots</math>                  <math>\vdots</math>
 +
 +
From the observation, we can assume the following formula is true:
  
 
<math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N}</math>
 
<math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N}</math>
 +
----
 +
==Discussion==
 +
*Would somebody care to add these to the [[Collective_Table_of_Formulas]]? Perhaps one should create be a new page dedicated to summation formulas.
  
-----------------------------
+
----
S5.2_45
+
[[2011_Fall_MA_181_Bell|Back to MA 181, Prof. Bell]]
<!-- \left(  \right) -->
+
<!-- <math>  </math> -->
+
 
+
<math>f\left( x \right)=2x^3</math>
+
 
+
<math>
+
\lim_{N\rightarrow\infty}\sum_{n=1}^Nf\left( x_n^* \right)\,\Delta x_n
+
  
=\lim_{N\rightarrow\infty}\sum_{n=1}^N2\cdot\left( \dfracnN \right)^3\cdot\dfrac1N
 
</math>
 
 
[[Category:MA181Fall2011Bell]]
 
[[Category:MA181Fall2011Bell]]

Latest revision as of 04:17, 6 September 2011

Homework 2 collaboration area

Here's some interesting stuff:

$ \sum_{n=1}^N 1 = \dfrac11N $

$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $

$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $

       $ \vdots $                  $ \vdots $

From the observation, we can assume the following formula is true:

$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N} $


Discussion

  • Would somebody care to add these to the Collective_Table_of_Formulas? Perhaps one should create be a new page dedicated to summation formulas.

Back to MA 181, Prof. Bell

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett