(New page: =Homework 1, ECE438, Fall 2011, Prof. Boutin= ==Question 1== In ECE301, you learned that the Fourier transform of a step function <math>x(t)=u(t)</math> is the fo...)
 
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
=Homework 1, [[ECE438]], Fall 2011, [[user:mboutin|Prof. Boutin]]=
 
=Homework 1, [[ECE438]], Fall 2011, [[user:mboutin|Prof. Boutin]]=
 +
 +
----
  
 
==Question 1==
 
==Question 1==
Line 14: Line 16:
 
Pull in the relation into the fact, we obtain
 
Pull in the relation into the fact, we obtain
  
<math>{\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ).</math>
+
<math>{\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ). (*)</math>  
  
 
Then we justify the following equality.
 
Then we justify the following equality.
Line 20: Line 22:
 
<math>\delta(ax) = \frac{1}{a}\delta(x) </math>
 
<math>\delta(ax) = \frac{1}{a}\delta(x) </math>
  
Given <math>\int\limits_{-\infty}^{\infty}\delta(x)dx=1 </math>
+
First of all, we have
 +
 
 +
<math>\delta(ax) = \left\{
 +
\begin{array}{ll}
 +
\infty, & x=0\\
 +
0, & \text { else}.
 +
\end{array}
 +
\right.
 +
</math>
 +
 
 +
Now, given the fact that <math>\int\limits_{-\infty}^{\infty}\delta(x)dx=1 </math>
 +
 
 +
then <math>\int\limits_{-\infty}^{\infty}\delta(ax)dx \overset{\underset{\mathrm{y=ax}}{}}{=} \int\limits_{-\infty}^{\infty}\frac{1}{a}\delta(y)dy = \frac{1}{a}</math>
 +
 
 +
Therefore, <math>\delta(ax) = \frac{1}{a}\delta(x) </math>
 +
 
 +
Therefore, (*) can be further simplified to
 +
 
 +
<math>X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}({j 2\pi f})</math>
 +
 
 +
----
 +
==Question 2 ==
 +
 
 +
We cannot compute the Fourier transform directly because
 +
 
 +
<math>{\mathcal X}(\omega) = \int\limits_{-\infty}^{\infty}x(t)e^{-j\omega t}dt = \int\limits_{-\infty}^{\infty}e^{-j(\omega -\pi) t}dt</math>
 +
 
 +
cannot be integrated.
 +
 
 +
Instead, we can find out <math>{\mathcal X}(\omega) </math> using inverse Fourier transform.
 +
 
 +
<math>
 +
\begin{align}
 +
x(t) &= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega \\
 +
 
 +
 
 +
e^{j\pi t}&= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega
 +
 
 +
\end{align}
 +
</math>
 +
 
 +
By comparing the left hand side and right hand side of the equation, we have
 +
 
 +
<math>\frac{1}{2\pi}{\mathcal X}(\omega) = \delta(\omega - \pi)</math>
 +
 
 +
Therefore,
  
 +
<math>{\mathcal X}(\omega) = 2\pi \delta(\omega - \pi)</math>
  
 
----
 
----

Latest revision as of 05:15, 7 September 2011

Homework 1, ECE438, Fall 2011, Prof. Boutin


Question 1

In ECE301, you learned that the Fourier transform of a step function $ x(t)=u(t) $ is the following:

$ {\mathcal X} (\omega) = \frac{1}{j \omega} + \pi \delta (\omega ). $

Use this fact to obtain an expression for the Fourier transform $ X(f) $ (in terms of frequency in hertz) of the step function. (Your answer should agree with the one given in this table.) Justify all your steps.

Answer: Recall the relation between frequency in hertz $ f $ and frequency in radius $ \omega $

$ \omega =2\pi f $

Pull in the relation into the fact, we obtain

$ {\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ). (*) $

Then we justify the following equality.

$ \delta(ax) = \frac{1}{a}\delta(x) $

First of all, we have

$ \delta(ax) = \left\{ \begin{array}{ll} \infty, & x=0\\ 0, & \text { else}. \end{array} \right. $

Now, given the fact that $ \int\limits_{-\infty}^{\infty}\delta(x)dx=1 $

then $ \int\limits_{-\infty}^{\infty}\delta(ax)dx \overset{\underset{\mathrm{y=ax}}{}}{=} \int\limits_{-\infty}^{\infty}\frac{1}{a}\delta(y)dy = \frac{1}{a} $

Therefore, $ \delta(ax) = \frac{1}{a}\delta(x) $

Therefore, (*) can be further simplified to

$ X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}({j 2\pi f}) $


Question 2

We cannot compute the Fourier transform directly because

$ {\mathcal X}(\omega) = \int\limits_{-\infty}^{\infty}x(t)e^{-j\omega t}dt = \int\limits_{-\infty}^{\infty}e^{-j(\omega -\pi) t}dt $

cannot be integrated.

Instead, we can find out $ {\mathcal X}(\omega) $ using inverse Fourier transform.

$ \begin{align} x(t) &= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega \\ e^{j\pi t}&= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega \end{align} $

By comparing the left hand side and right hand side of the equation, we have

$ \frac{1}{2\pi}{\mathcal X}(\omega) = \delta(\omega - \pi) $

Therefore,

$ {\mathcal X}(\omega) = 2\pi \delta(\omega - \pi) $


Back to Homework1

Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang