(New page: ==Norm and Agrument of a Complex Number== For any complex number :<math>z = x + iy\,</math> The '''norm''' (absolute value) of <math>z\,</math> is given by :<math> |z| = \sqrt{x^2+y^2}...)
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Norm and Agrument of a Complex Number==
+
[[Category:Complex Number Magnitude]]
 +
[[Category:ECE301]]
 +
==Norm and Agrument of a Complex Number ([[Homework_1_ECE301Fall2008mboutin|HW1]], [[ECE301]], [[Main_Page_ECE301Fall2008mboutin|Fall 2008]])==
  
 
For any complex number
 
For any complex number
Line 5: Line 7:
 
:<math>z = x + iy\,</math>
 
:<math>z = x + iy\,</math>
  
The '''norm''' (absolute value) of <math>z\,</math> is given by
+
The '''norm''' (absolute value) of <math>z\,</math> is given by (<span style="color:red"> see important comment on [[HW1.3_David_Record_-_Magnitude_of_a_Complex_Number_ECE301Fall2008mboutin|this page]] regarding using the term "absolute value" only for real numbers</span>)
  
 
:<math> |z| = \sqrt{x^2+y^2}</math>
 
:<math> |z| = \sqrt{x^2+y^2}</math>
 +
  
 
The '''argument''' of <math>z\,</math> is given by
 
The '''argument''' of <math>z\,</math> is given by
Line 22: Line 25:
  
 
:<math> z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\,</math>
 
:<math> z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\,</math>
 +
----
 +
[[Main_Page_ECE301Fall2008mboutin|Back to ECE301 Fall 2008 Prof. Boutin]]
 +
 +
[[ECE301|Back to ECE301]]
 +
 +
[[More_on_complex_magnitude|Back to Complex Magnitude page]]
 +
 +
Visit the [[ComplexNumberFormulas|"Complex Number Identities and Formulas" page]]

Latest revision as of 05:36, 23 September 2011

Norm and Agrument of a Complex Number (HW1, ECE301, Fall 2008)

For any complex number

$ z = x + iy\, $

The norm (absolute value) of $ z\, $ is given by ( see important comment on this page regarding using the term "absolute value" only for real numbers)

$ |z| = \sqrt{x^2+y^2} $


The argument of $ z\, $ is given by

$ \phi = arctan (y/x)\, $


Conversion from Cartesian to Polar Form

$ x = r\cos \phi\, $
$ y = \sin \phi\, $
$ z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\, $

Back to ECE301 Fall 2008 Prof. Boutin

Back to ECE301

Back to Complex Magnitude page

Visit the "Complex Number Identities and Formulas" page

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009