Line 98: | Line 98: | ||
==Question 2== | ==Question 2== | ||
− | ( | + | (1) <math>x[n]=a^{n+1}u[n-1],\ a>0</math> |
+ | |||
+ | <math>\begin{align} | ||
+ | X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\ | ||
+ | &= \sum_{n=-\infty}^{\infty} a^{n+1} u[n-1]z^{-n} \\ | ||
+ | &= a\sum_{n=1}^{\infty} a^{n}z^{-n} \\ | ||
+ | &= \frac{a^2z^{-1}}{1-az^{-1}} | ||
+ | \end{align}</math> | ||
+ | |||
---- | ---- | ||
[[Hw2_ECE438F11|Back to Homework2]] | [[Hw2_ECE438F11|Back to Homework2]] | ||
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]] | [[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]] |
Revision as of 11:04, 12 September 2011
Homework 2, ECE438, Fall 2011, Prof. Boutin
Question 1
Pick a note frequency f0 = 392H'z
x(t) = c'o's(2πf0t) = c'o's(2π * 392t) |
$ a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000} $ |
$ 2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs. $ |
$ \begin{align} x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\ \end{align} $
$ 0<2\pi *\frac{392}{1000}<\pi $ |
$ -\pi<-2\pi *\frac{392}{1000}<0 $ |
$ \begin{align} \mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ &=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ \end{align} $
$ for\ all\ \omega $ |
$ \mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] $ |
In this situation, no aliasing occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum remains the same as Fig a-1. |
$ b.\ Assign\ sampling\ period\ T_2=\frac{1}{500} $ |
$ 2f_0>\frac{1}{T_2}, \ Aliasing\ occurs. $ |
$ \begin{align} x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\ \end{align} $
$ \pi<2\pi *\frac{392}{500}<2\pi $ |
$ -2\pi<-2\pi *\frac{392}{500}<\pi $ |
$ \mathcal{X}_2(\omega)=\pi \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $ |
$ X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $ |
$ for\ all\ \omega $ |
$ \mathcal{X}_2(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $ |
$ X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $ |
In this situation, aliasing DO occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum is different from Fig b-1. |
Question 2
(1) $ x[n]=a^{n+1}u[n-1],\ a>0 $
$ \begin{align} X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\ &= \sum_{n=-\infty}^{\infty} a^{n+1} u[n-1]z^{-n} \\ &= a\sum_{n=1}^{\infty} a^{n}z^{-n} \\ &= \frac{a^2z^{-1}}{1-az^{-1}} \end{align} $