(One intermediate revision by one other user not shown)
Line 2: Line 2:
 
From the [[ECE_600_Prerequisites|ECE600 Pre-requisites notes]] of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 
From the [[ECE_600_Prerequisites|ECE600 Pre-requisites notes]] of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 
----
 
----
Let <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  be two jointly-distributed RVs, suppose we want to estimate the value of <math>\mathbf{Y}</math>  given the value of <math>\mathbf{X}</math>  (i.e. given that we observe<math>\left\{ \mathbf{X}=x\right\}</math>  ). What is the “best” estimate of <math>\mathbf{Y}</math> ? One commonly used error criterion is square-error. The goal then becomes to minimize the mean-square error. We wish to find a function <math>c\left(x\right)</math>  to estimate <math>\mathbf{Y}</math>  given that <math>\mathbf{X}=x</math>  such that <math>\epsilon=E\left[\left(\mathbf{Y}-c\left(\mathbf{X}\right)\right)^{2}\right]</math>  is minimized.
+
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be two jointly-distributed RVs, suppose we want to estimate the value of <math class="inline">\mathbf{Y}</math>  given the value of <math class="inline">\mathbf{X}</math>  (i.e. given that we observe<math class="inline">\left\{ \mathbf{X}=x\right\}</math>  ). What is the “best” estimate of <math class="inline">\mathbf{Y}</math> ? One commonly used error criterion is square-error. The goal then becomes to minimize the mean-square error. We wish to find a function <math class="inline">c\left(x\right)</math>  to estimate <math class="inline">\mathbf{Y}</math>  given that <math class="inline">\mathbf{X}=x</math>  such that <math class="inline">\epsilon=E\left[\left(\mathbf{Y}-c\left(\mathbf{X}\right)\right)^{2}\right]</math>  is minimized.
  
 
Claim
 
Claim
  
The mean-square error is minimized by the function <math>c\left(x\right)=E\left[\mathbf{Y}|\mathbf{X}=x\right]</math>.  
+
The mean-square error is minimized by the function <math class="inline">c\left(x\right)=E\left[\mathbf{Y}|\mathbf{X}=x\right]</math>.  
  
 
We will use the following notation.
 
We will use the following notation.
  
<math>\hat{y}_{MMS}\left(x\right)=E\left[\mathbf{Y}|\mathbf{X}=x\right]</math>  
+
<math class="inline">\hat{y}_{MMS}\left(x\right)=E\left[\mathbf{Y}|\mathbf{X}=x\right]</math>  
  
<math>\hat{x}_{MMS}\left(y\right)=E\left[\mathbf{X}|\mathbf{Y}=y\right]</math>  
+
<math class="inline">\hat{x}_{MMS}\left(y\right)=E\left[\mathbf{X}|\mathbf{Y}=y\right]</math>  
  
 
Maximum Aposteriori Probability estimator
 
Maximum Aposteriori Probability estimator
  
<math>\hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{\mathbf{Y}}\left(y|x\right)\right\}</math>   
+
<math class="inline">\hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{\mathbf{Y}}\left(y|x\right)\right\}</math>   
  
<math>\hat{x}_{MAP}\left(y\right)=\arg\max_{x}\left\{ f_{\mathbf{X}}\left(x|y\right)\right\}</math>
+
<math class="inline">\hat{x}_{MAP}\left(y\right)=\arg\max_{x}\left\{ f_{\mathbf{X}}\left(x|y\right)\right\}</math>
 +
----
 +
[[ECE600|Back to ECE600]]
 +
 
 +
[[ECE 600 Prerequisites|Back to ECE 600 Prerequisites]]

Latest revision as of 11:33, 30 November 2010

1.12 Minimum Mean-Square Error Estimation

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly-distributed RVs, suppose we want to estimate the value of $ \mathbf{Y} $ given the value of $ \mathbf{X} $ (i.e. given that we observe$ \left\{ \mathbf{X}=x\right\} $ ). What is the “best” estimate of $ \mathbf{Y} $ ? One commonly used error criterion is square-error. The goal then becomes to minimize the mean-square error. We wish to find a function $ c\left(x\right) $ to estimate $ \mathbf{Y} $ given that $ \mathbf{X}=x $ such that $ \epsilon=E\left[\left(\mathbf{Y}-c\left(\mathbf{X}\right)\right)^{2}\right] $ is minimized.

Claim

The mean-square error is minimized by the function $ c\left(x\right)=E\left[\mathbf{Y}|\mathbf{X}=x\right] $.

We will use the following notation.

$ \hat{y}_{MMS}\left(x\right)=E\left[\mathbf{Y}|\mathbf{X}=x\right] $

$ \hat{x}_{MMS}\left(y\right)=E\left[\mathbf{X}|\mathbf{Y}=y\right] $

Maximum Aposteriori Probability estimator

$ \hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{\mathbf{Y}}\left(y|x\right)\right\} $

$ \hat{x}_{MAP}\left(y\right)=\arg\max_{x}\left\{ f_{\mathbf{X}}\left(x|y\right)\right\} $


Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett