Line 14: Line 14:
  
  
<math>y[n] + 2y[n-1] - \frac{1}{2}y[n-3] + y[n-4] = x[n]\!</math>
+
<math>y[n] + 2y[n-1] - \frac{1}{2}y[n-3] + y[n-4] = 5x[n]\!</math>
  
<math>F(y[n] + 2y[n-1] - \frac{1}{2}y[n-3] + y[n-4]) = F(x[n])\!</math>
+
<math>F(y[n] + 2y[n-1] - \frac{1}{2}y[n-3] + y[n-4]) = F(5x[n])\!</math>
  
<math>Y(\omega) + 2F(y[n-1]) - \frac{1}{2}F(y[n-3]) + e^{-4j\omega}Y(\omega) = X(\omega)\!</math>
+
<math>Y(\omega) + 2F(y[n-1]) - \frac{1}{2}F(y[n-3]) + e^{-4j\omega}Y(\omega) = 5X(\omega)\!</math>
  
<math>Y(\omega) + 2e^{-j\omega}Y(\omega) - \frac{1}{2}e^{-3j\omega}Y(\omega) + e^{-4j\omega}Y(\omega) = X(\omega)\!</math>
+
<math>Y(\omega) + 2e^{-j\omega}Y(\omega) - \frac{1}{2}e^{-3j\omega}Y(\omega) + e^{-4j\omega}Y(\omega) = 5X(\omega)\!</math>

Revision as of 10:26, 23 October 2008

Difference Equations

DT systems described by linear constant-coefficient difference equations are very important to the practice of signals and systems. They are of special importance when implementing filters. These equations are of the form:

$ y[n] + a_{0}y[n-n_{0}] + a_{1}y[n-n_{1}] + ... + a_{n-1}y[n-n_{n-1}] = x[n]\! $

Finding the Frequency Response from a Difference Equation

If we are given a system defined by a difference equation, it is possible to find the frequency response (actually it is quite simple to find the frequency response). An example of this is given below.

Example

Find the frequency response of the following difference equation.

$ y[n] + 2y[n-1] - \frac{1}{2}y[n-3] + y[n-4] = 5x[n]\! $


$ y[n] + 2y[n-1] - \frac{1}{2}y[n-3] + y[n-4] = 5x[n]\! $

$ F(y[n] + 2y[n-1] - \frac{1}{2}y[n-3] + y[n-4]) = F(5x[n])\! $

$ Y(\omega) + 2F(y[n-1]) - \frac{1}{2}F(y[n-3]) + e^{-4j\omega}Y(\omega) = 5X(\omega)\! $

$ Y(\omega) + 2e^{-j\omega}Y(\omega) - \frac{1}{2}e^{-3j\omega}Y(\omega) + e^{-4j\omega}Y(\omega) = 5X(\omega)\! $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison