(Methods to recover a signal)
(Methods to recover a signal)
 
(6 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T])</math>
 
<math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T])</math>
  
[[Image:/Zero_order.jpg._ECE301Fall2008mboutin]]  
+
[[Image:Zero_order_ECE301Fall2008mboutin.jpg|800px|center|thumb]]  
  
 
2. First-order intapolation
 
2. First-order intapolation
Line 13: Line 13:
 
where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k}  for t_k < t < t_{k+1} </math>  
 
where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k}  for t_k < t < t_{k+1} </math>  
  
[[Image:/First_order.jpg._ECE301Fall2008mboutin]]
+
[[Image:First_order_ECE301Fall2008mboutin.jpg|800px|left]]

Latest revision as of 10:47, 10 November 2008

Methods to recover a signal

1. Zero-order intapolation (step function)

$ x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T]) $

Zero order ECE301Fall2008mboutin.jpg

2. First-order intapolation

$ x(t)= \sum^{\infty}_{k = -\infty} f_k (t) $

where $ f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k} for t_k < t < t_{k+1} $

First order ECE301Fall2008mboutin.jpg

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010