Line 90: Line 90:
  
 
#Syl<sub>p</sub>(G) cannot be the empty set.&nbsp;  
 
#Syl<sub>p</sub>(G) cannot be the empty set.&nbsp;  
#All Sylow p-subgroups are conjugate in G. To expand, if P<sub>1</sub> and P<sub>2</sub> are both Sylow p-subgroups, then there is some g in G such that P<sub>1</sub>=gP<sub>1</sub>g<sup>-1</sup>.<sup></sup>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;In particular, n<sub>p</sub>(G)=(G:N<sub>G</sub>(P)).  
+
#All Sylow p-subgroups are conjugate in G. To expand, if P<sub>1</sub> and P<sub>2</sub> are both Sylow p-subgroups, then there is some g in G such that P<sub>1</sub>=gP<sub>1</sub>g<sup>-1</sup>.<sup></sup>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;In particular, n<sub>p</sub>(G)=(G:N<sub>G</sub>(P)).  
 
#Any p-subgroup of G is contained in a Sylow p-subgroup  
 
#Any p-subgroup of G is contained in a Sylow p-subgroup  
 
#n<sub>p</sub>(G) is congruent to 1 mod p.&nbsp;
 
#n<sub>p</sub>(G) is congruent to 1 mod p.&nbsp;

Revision as of 11:25, 30 November 2013

Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu

Outline:

Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups

               -Relationship to Abelian Groups

-Application -Frattini Subgroup

       -Special p groups
-Pro p-groups
-Powerful p-groups

Sylow Theorems -Application

                -Theorem 1

-Theorem 2 -Theorem 3

       -Importance of Lagrange Theory

I plan on deleting everything above this after we have completed the paper.  I planned on just using the outline as a guide. 

I've been using these websites: 

http://math.berkeley.edu/~sikimeti/SylowNotes.pdf

http://omega.albany.edu:8008/Symbols.html (this is Tex symbols)

http://www.ams.org/journals/bull/2001-38-03/S0273-0979-01-00909-0/S0273-0979-01-00909-0.pdf

and also the pdf emailed to you

http://groupprops.subwiki.org/wiki/Regular_p-group regular p-group

http://people.maths.ox.ac.uk/craven/docs/lectures/pgroups.pdf this one is alm[[|]]ost about everything.





P-groups

Definitions:

  • Let p be a prime p be an integer greater or equal to 0. A p-group is a group of order pn.
  • A subgroup of order pk for some k ≥ 1 is called a p-subgroup.
  • If |G| = pαm where p does not divide m, then a subgroup of order pα is called a Sylow p-subgroup of G.


Propositions:

If G is a p-group then G contains an element of order p.

  1. If G is a p-group then Z(G)cannot be equal to {1}
  2. Let p be a prime and let G be a group of order p2. Then G is abelian.
  3. If G is a p-group of order pa, then there exists a chain, {1} is contained in N1 contained in N2 contained in...contained in Na-1 contained in Gof normal subgroups of G, such that |Ni|=pi.


All proofs of these Propositions can be found here

Regular p-groups

Definitons:

  • For every $ a, b \in G $ there exists $ c \in [<a,b>,<a,b>] $ such that apbp = (a'b)pcp
  • For every $ a, b \in G $ there exist $ c_1 , c_2 , . . . , c_k \in [<a,b>,<a,b>] $ such that $ a^p b^p = (ab)^p c^p _1 c^p _2 . . . c^p _k $
  • For evert $ a, b \in G $ and every natural number n there exist Failed to parse (syntax error): c_1 , c_2 , . . . , c_k \in {,a,b>,<a,b>]
such that $ a^q b^q = (ab)^q c^q _1 c^q _2 . . . c^q _k $ where q = pn



Sylow's Theorems

Notation:

Sylp(G) = the set of Sylow p-subgroups of G

np(G)= the # of Sylow p-subgroups of G =|Sylp(G)|

Theorems:

Let G be a group of order pαm, where p is a prime, m≥1, and p does not divide m.  Then:

  1. Sylp(G) cannot be the empty set. 
  2. All Sylow p-subgroups are conjugate in G. To expand, if P1 and P2 are both Sylow p-subgroups, then there is some g in G such that P1=gP1g-1.                           In particular, np(G)=(G:NG(P)).
  3. Any p-subgroup of G is contained in a Sylow p-subgroup
  4. np(G) is congruent to 1 mod p. 

All Proofs of these Theorems can be found here




Extra Information

For students looking for extensive history on p-groups, Sylow's Theorems and finite simple groups in general you can find this information here

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009