Line 10: Line 10:
  
 
         -Special p groups
 
         -Special p groups
          -Pro p-groups
+
        -Pro p-groups
          -Powerful p-groups
+
        -Powerful p-groups
  
 
Sylow Theorems -Application  
 
Sylow Theorems -Application  
Line 17: Line 17:
 
                 -Theorem 1
 
                 -Theorem 1
  
-Theorem 2 -Theorem 3  
+
-Theorem 2 -Theorem 3<sup></sup><sup></sup>
  
 
         -Importance of Lagrange Theory
 
         -Importance of Lagrange Theory
  
P-groups:
+
=== I plan on deleting everything above this after we have completed the paper. &nbsp;I planned on just using the outline as a guide.&nbsp;<br>  ===
 +
 
 +
I've been using these websites:&nbsp;
 +
 
 +
http://math.berkeley.edu/~sikimeti/SylowNotes.pdf
 +
 
 +
http://omega.albany.edu:8008/Symbols.html (this is Tex symbols)
 +
 
 +
The pdf emailed to you
 +
 
 +
http://www.ams.org/journals/bull/2001-38-03/S0273-0979-01-00909-0/S0273-0979-01-00909-0.pdf
 +
 
 +
<br>
 +
 
 +
----
 +
 
 +
<br>
 +
 
 +
== P-groups ==
  
 
'''Definitions:'''  
 
'''Definitions:'''  
Line 27: Line 45:
 
*Let p be a prime p <math>\in</math> <math>\mathbb{Z}</math> such that <math>\mathbb{Z}</math>≥0. A p-group is a group of order p<sup>n</sup>.  
 
*Let p be a prime p <math>\in</math> <math>\mathbb{Z}</math> such that <math>\mathbb{Z}</math>≥0. A p-group is a group of order p<sup>n</sup>.  
 
*A subgroup of order p<sup>k</sup> for some k ≥ 1 is called a p-subgroup.  
 
*A subgroup of order p<sup>k</sup> for some k ≥ 1 is called a p-subgroup.  
*If |G| = p<sup><span class="texhtml">α</span></sup>m where p does not divide m, then a subgroup of order p<sup><span class="texhtml">α</span></sup> is called a Sylow p-subgroup of G.<br>
+
*If |G| = p<sup><span class="texhtml">α</span></sup>m where p does not divide m, then a subgroup of order p<sup><span class="texhtml">α</span></sup> is called a Sylow p-subgroup of G.
 +
 
 +
<br>
 +
 
 +
== Sylow's Theorems  ==
 +
 
 +
'''Definitions:'''
 +
 
 +
Let G be a group of order&nbsp;p<sup>α</sup>m, where p is a prime, m≥1, and p does not divide m. &nbsp;Then:<sub></sub>
 +
 
 +
#Syl<sub>p</sub>(G)&nbsp;<sub></sub>
  
 
[[Category:MA453Fall2013Walther]]
 
[[Category:MA453Fall2013Walther]]

Revision as of 15:20, 29 November 2013

Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu

Outline:

Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups

               -Relationship to Abelian Groups

-Application -Frattini Subgroup

       -Special p groups
       -Pro p-groups
       -Powerful p-groups

Sylow Theorems -Application

                -Theorem 1

-Theorem 2 -Theorem 3

       -Importance of Lagrange Theory

I plan on deleting everything above this after we have completed the paper.  I planned on just using the outline as a guide. 

I've been using these websites: 

http://math.berkeley.edu/~sikimeti/SylowNotes.pdf

http://omega.albany.edu:8008/Symbols.html (this is Tex symbols)

The pdf emailed to you

http://www.ams.org/journals/bull/2001-38-03/S0273-0979-01-00909-0/S0273-0979-01-00909-0.pdf




P-groups

Definitions:

  • Let p be a prime p $ \in $ $ \mathbb{Z} $ such that $ \mathbb{Z} $≥0. A p-group is a group of order pn.
  • A subgroup of order pk for some k ≥ 1 is called a p-subgroup.
  • If |G| = pαm where p does not divide m, then a subgroup of order pα is called a Sylow p-subgroup of G.


Sylow's Theorems

Definitions:

Let G be a group of order pαm, where p is a prime, m≥1, and p does not divide m.  Then:

  1. Sylp(G) 

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett