Line 10: Line 10:
  
 
         -Special p groups
 
         -Special p groups
  -Pro p-groups
+
-Pro p-groups
  -Powerful p-groups
+
-Powerful p-groups
  
 
Sylow Theorems -Application  
 
Sylow Theorems -Application  
Line 33: Line 33:
 
and also the pdf emailed to you  
 
and also the pdf emailed to you  
  
http://groupprops.subwiki.org/wiki/Regular_p-group regular p-group
+
http://groupprops.subwiki.org/wiki/Regular_p-group regular p-group  
  
http://people.maths.ox.ac.uk/craven/docs/lectures/pgroups.pdf this one is almost about everything.
+
http://people.maths.ox.ac.uk/craven/docs/lectures/pgroups.pdf this one is alm[[|]]ost about everything.  
  
 +
<br>
  
 
----
 
----
  
 
+
<br> <br>  
<br>  
+
  
 
== P-groups  ==
 
== P-groups  ==
Line 47: Line 47:
 
'''Definitions:'''  
 
'''Definitions:'''  
  
*Let p be a prime p <math>\in</math> <math>\mathbb{Z}</math> such that <math>\mathbb{Z}</math>≥0. A p-group is a group of order p<sup>n</sup>.  
+
*Let p be a prime p be an integer greater or equal to 0.&nbsp;A p-group is a group of order p<sup>n</sup>.  
 
*A subgroup of order p<sup>k</sup> for some k ≥ 1 is called a p-subgroup.  
 
*A subgroup of order p<sup>k</sup> for some k ≥ 1 is called a p-subgroup.  
 
*If |G| = p<sup><span class="texhtml">α</span></sup>m where p does not divide m, then a subgroup of order p<sup><span class="texhtml">α</span></sup> is called a Sylow p-subgroup of G.
 
*If |G| = p<sup><span class="texhtml">α</span></sup>m where p does not divide m, then a subgroup of order p<sup><span class="texhtml">α</span></sup> is called a Sylow p-subgroup of G.
  
 +
<br>
 +
 +
'''Propositions:'''
 +
 +
If G is a p-group then G contains an element of order p.
 +
 +
#If G is a p-group then Z(G)cannot be equal to {1}
 +
#Let p be a prime and let G be a group of order p<sup>2</sup>. Then G is abelian.
 +
#If G is a p-group of order pa, then there exists a chain, {1} is contained in N1 contained in N2 contained in...contained in Na-1 contained in Gof normal subgroups of G, such that |Ni|=pi.
  
<math>\usepackage{relsize}</math>
 
==Regular p-groups==
 
'''Definitons:'''
 
* For every <math>a, b \in G</math> there exists <math>c \in [<a,b>,<a,b>]</math> such that <math>a^p b^p = (ab)^p c^p</math>
 
* For every <math>a, b \in G</math> there exist <math>c_1 , c_2 , . . . , c_k \in [<a,b>,<a,b>]</math> such that <math>a^p b^p = (ab)^p c^p _1 c^p _2 . . . c^p _k</math>
 
*For evert <math>a, b \in G</math> and every natural number <math>n</math> there exist <math>c_1 , c_2 , . . . , c_k \in [<a,b>,<a,b>]</math> such that <math>a^q b^q = (ab)^q c^q _1 c^q _2 . . . c^q _k</math> where <math>q = p^n</math>
 
 
<br>  
 
<br>  
 +
 +
All proofs of these Propositions can be found [http://www.ms.unimelb.edu.au/~ram/Notes/pgroupsSylowtheoremsContent.html here]
 +
 +
== Regular p-groups  ==
 +
 +
'''Definitons:'''
 +
 +
*For every <math>a, b \in G</math> there exists <math>c \in [<a,b>,<a,b>]</math> such that <span class="texhtml">''a''<sup>''p''</sup>''b''<sup>''p''</sup> = (''a''''b'''''<b>)<sup>''p''</sup>''c''<sup>''p''</sup></b></span>
 +
*For every <math>a, b \in G</math> there exist <math>c_1 , c_2 , . . . , c_k \in [<a,b>,<a,b>]</math> such that <math>a^p b^p = (ab)^p c^p _1 c^p _2 . . . c^p _k</math>
 +
*For evert <math>a, b \in G</math> and every natural number <span class="texhtml">''n''</span> there exist '''Failed to parse (syntax error): c_1 , c_2 , . . . , c_k \in {,a,b&gt;,&lt;a,b&gt;]'''
 +
 +
such that <math>a^q b^q = (ab)^q c^q _1 c^q _2 . . . c^q _k</math> where <span class="texhtml">''q'' = ''p''<sup>''n''</sup></span>
 +
 +
<br> <br>
  
 
== Sylow's Theorems  ==
 
== Sylow's Theorems  ==
  
'''Definitions:'''  
+
Notation:
 +
 
 +
Syl<sub>p</sub>(G) = the set of Sylow p-subgroups of G
 +
 
 +
n<sub>p</sub>(G)= the # of Sylow p-subgroups of G =|Syl<sub>p</sub>(G)|
 +
 
 +
'''Theorems:'''  
  
 
Let G be a group of order&nbsp;p<sup>α</sup>m, where p is a prime, m≥1, and p does not divide m. &nbsp;Then:<sub></sub>  
 
Let G be a group of order&nbsp;p<sup>α</sup>m, where p is a prime, m≥1, and p does not divide m. &nbsp;Then:<sub></sub>  
  
#Syl<sub>p</sub>(G)&nbsp;<sub></sub><math>\neq</math>'''Failed to parse (lexing error): \0'''
+
#Syl<sub>p</sub>(G) cannot be the empty set.&nbsp;  
All Sylow p-subgroups are conjugate in G. To expand, if P<sub>1</sub> and P<sub>2</sub> are both Sylow p-subgroups, then there is some g<sup></sup>
+
#All Sylow p-subgroups are conjugate in G. To expand, if P<sub>1</sub> and P<sub>2</sub> are both Sylow p-subgroups, then there is some g in G such that P<sub>1</sub>=gP<sub>1</sub>g<sup>-1</sup>.<sup></sup>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;In particular, n<sub>p</sub>(G)=(G:N<sub>G</sub>(P)).
 +
#Any p-subgroup of G is contained in a Sylow p-subgroup
 +
#n<sub>p</sub>(G) is congruent to 1 mod p.&nbsp;
 +
 
 +
All Proofs of these Theorems can be found [http://math.berkeley.edu/~sikimeti/SylowNotes.pdf here]
  
 
<br>  
 
<br>  
 +
 +
<br>
 +
 +
<br>
 +
 +
== Extra Information  ==
 +
 +
For students looking for extensive history on p-groups, Sylow's Theorems and finite simple groups in general you can find this information [http://www.ams.org/journals/bull/2001-38-03/S0273-0979-01-00909-0/S0273-0979-01-00909-0.pdf here]
  
 
[[Category:MA453Fall2013Walther]]
 
[[Category:MA453Fall2013Walther]]

Revision as of 11:21, 30 November 2013

Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu

Outline:

Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups

               -Relationship to Abelian Groups

-Application -Frattini Subgroup

       -Special p groups
-Pro p-groups
-Powerful p-groups

Sylow Theorems -Application

                -Theorem 1

-Theorem 2 -Theorem 3

       -Importance of Lagrange Theory

I plan on deleting everything above this after we have completed the paper.  I planned on just using the outline as a guide. 

I've been using these websites: 

http://math.berkeley.edu/~sikimeti/SylowNotes.pdf

http://omega.albany.edu:8008/Symbols.html (this is Tex symbols)

http://www.ams.org/journals/bull/2001-38-03/S0273-0979-01-00909-0/S0273-0979-01-00909-0.pdf

and also the pdf emailed to you

http://groupprops.subwiki.org/wiki/Regular_p-group regular p-group

http://people.maths.ox.ac.uk/craven/docs/lectures/pgroups.pdf this one is alm[[|]]ost about everything.





P-groups

Definitions:

  • Let p be a prime p be an integer greater or equal to 0. A p-group is a group of order pn.
  • A subgroup of order pk for some k ≥ 1 is called a p-subgroup.
  • If |G| = pαm where p does not divide m, then a subgroup of order pα is called a Sylow p-subgroup of G.


Propositions:

If G is a p-group then G contains an element of order p.

  1. If G is a p-group then Z(G)cannot be equal to {1}
  2. Let p be a prime and let G be a group of order p2. Then G is abelian.
  3. If G is a p-group of order pa, then there exists a chain, {1} is contained in N1 contained in N2 contained in...contained in Na-1 contained in Gof normal subgroups of G, such that |Ni|=pi.


All proofs of these Propositions can be found here

Regular p-groups

Definitons:

  • For every $ a, b \in G $ there exists $ c \in [<a,b>,<a,b>] $ such that apbp = (a'b)pcp
  • For every $ a, b \in G $ there exist $ c_1 , c_2 , . . . , c_k \in [<a,b>,<a,b>] $ such that $ a^p b^p = (ab)^p c^p _1 c^p _2 . . . c^p _k $
  • For evert $ a, b \in G $ and every natural number n there exist Failed to parse (syntax error): c_1 , c_2 , . . . , c_k \in {,a,b>,<a,b>]
such that $ a^q b^q = (ab)^q c^q _1 c^q _2 . . . c^q _k $ where q = pn



Sylow's Theorems

Notation:

Sylp(G) = the set of Sylow p-subgroups of G

np(G)= the # of Sylow p-subgroups of G =|Sylp(G)|

Theorems:

Let G be a group of order pαm, where p is a prime, m≥1, and p does not divide m.  Then:

  1. Sylp(G) cannot be the empty set. 
  2. All Sylow p-subgroups are conjugate in G. To expand, if P1 and P2 are both Sylow p-subgroups, then there is some g in G such that P1=gP1g-1.                 In particular, np(G)=(G:NG(P)).
  3. Any p-subgroup of G is contained in a Sylow p-subgroup
  4. np(G) is congruent to 1 mod p. 

All Proofs of these Theorems can be found here




Extra Information

For students looking for extensive history on p-groups, Sylow's Theorems and finite simple groups in general you can find this information here

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood