(New page: Category:Set Theory Category:Math == Theorem == Let <math>A</math> and <math>B<math> be sets. Then <br/> '''(a)''' (A ∩ B) ⊂ A '''(b)''' A ⊂ (A ∪ B) and Intersection i...)
 
Line 19: Line 19:
  
 
'''(a)''' let x ∈ (A ∩ B) ⇔ x ∈ A and x ∈ B ⇒ x ∈ A ⇒ (A ∩ B) ⊂ A. <br/>
 
'''(a)''' let x ∈ (A ∩ B) ⇔ x ∈ A and x ∈ B ⇒ x ∈ A ⇒ (A ∩ B) ⊂ A. <br/>
'''(b)''' let x ∈ A. Then it is true that x is either in A or in B ⇔ x ∈ (A ∪ B) ⇒ A ⊂ (A ∪ B).
+
'''(b)''' let x ∈ A. Then it is true that x is either in A or in B ⇔ x ∈ (A ∪ B) ⇒ A ⊂ (A ∪ B). <br/>
 
<math>\blacksquare</math>
 
<math>\blacksquare</math>
  

Revision as of 11:19, 1 October 2013


Theorem

Let $ A $ and $ B<math> be sets. Then <br/> '''(a)''' (A ∩ B) ⊂ A '''(b)''' A ⊂ (A ∪ B) and Intersection is distributive over union ⇔ A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) <br/> <math>A\cap (B\cup C) = (A\cap B)\cup (A\cap C $
where $ A $, $ B $ and $ C $ are events in a probability space.



Proof

(a) let x ∈ (A ∩ B) ⇔ x ∈ A and x ∈ B ⇒ x ∈ A ⇒ (A ∩ B) ⊂ A.
(b) let x ∈ A. Then it is true that x is either in A or in B ⇔ x ∈ (A ∪ B) ⇒ A ⊂ (A ∪ B).
$ \blacksquare $



References



Back to list of all proofs

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett