(5 intermediate revisions by the same user not shown)
Line 8: Line 8:
 
on the interval <math>[a,b]</math>.
 
on the interval <math>[a,b]</math>.
  
I will give Josh Hunsberger's proof here.
+
I will give Josh Hunsberger's proof here. --[[User:Bell|Bell]] 15:04, 29 September 2008 (UTC)
  
 
Proof.  Notice that
 
Proof.  Notice that
Line 14: Line 14:
 
<math>V(c)= \int_a^b \pi (f(x)-c)^2\ dx = Ac^2-Bc+D</math>
 
<math>V(c)= \int_a^b \pi (f(x)-c)^2\ dx = Ac^2-Bc+D</math>
  
where <math>A=\pi \int_a^b f(x)^2\ dx</math> is a constant which is positive if <math>f</math>
+
where the constants <math>A</math>, <math>B</math>, and <math>D</math> are given by
is not identically zero, <math>B=2\pi\int_a^b f(x)\ dx</math> and <math>D=\pi(b-a)</math>.
+
  
The case where <math>f(x)</math> is identically zero is easy.  The minimum volume is zero
+
<math>A=\pi(b-a)</math>,
and occurs at <math>c=0</math>, which is the average value of <math>f</math>.
+
  
Hence, we may assume that <math>f</math> is not identically zero and that <math>A</math> is
+
<math>B=2\pi\int_a^b f(x)\ dx</math>, and
a positive constant. In this case, the graph of <math>V(c)</math> is an upward opening
+
 
parabola.
+
<math>D=\pi \int_a^b f(x)^2\ dx</math>.
 +
 
 +
The graph of <math>V(c)</math> is an upward opening
 +
parabola.  Such a parabola has an absolute minimum at the value <math>c_0</math> such that
 +
<math>V'(c_0)=0</math>.  Since <math>V'(c)=2Ac-B</math>, this value of <math>c_0</math> is
 +
 
 +
<math>c_0 = \frac{B}{2A} = \frac{1}{b-a}\int_a^b f(x)\ dx,</math>
 +
 
 +
the average value of <math>f(x)</math> on the interval <math>[a,b]</math>.  To complete the argument,
 +
we must show that this value of <math>c</math> falls in the interval between
 +
<math>m</math> and <math>M</math>.  But this is easy because
 +
 
 +
<math>m \le f(x) \le M</math>
 +
 
 +
on <math>[a,b]</math> implies that
 +
 
 +
<math> \int_a^b m\ dx \le \int_a^b f(x)\ dx \le \int_a^b M\ dx,</math>
 +
 
 +
and so
 +
 
 +
<math> m(b-a) \le \int_a^b f(x)\ dx \le M(b-a),</math>
 +
 
 +
and dividing by <math>(b-a)</math> yields
 +
 
 +
<math>m\le c_0\le M.</math>
 +
 
 +
The proof is complete.

Latest revision as of 11:16, 29 September 2008

Suppose that $ f(x) $ is a continuous function on the interval $ [a,b] $. Let $ V(c) $ denote the volume of the solid obtained by revolving the area between the graph of $ y=f(x) $ and the line $ y=c $ about the line $ y=c $.

As $ c $ ranges from $ m=\{\text{min }f(x):a\le x\le b\} $ and $ M=\{\text{Max }f(x):a\le x\le b\} $, prove that the minmum value of $ V(c) $ is attained at $ c $ equal to the average value of $ f(x) $ on the interval $ [a,b] $.

I will give Josh Hunsberger's proof here. --Bell 15:04, 29 September 2008 (UTC)

Proof. Notice that

$ V(c)= \int_a^b \pi (f(x)-c)^2\ dx = Ac^2-Bc+D $

where the constants $ A $, $ B $, and $ D $ are given by

$ A=\pi(b-a) $,

$ B=2\pi\int_a^b f(x)\ dx $, and

$ D=\pi \int_a^b f(x)^2\ dx $.

The graph of $ V(c) $ is an upward opening parabola. Such a parabola has an absolute minimum at the value $ c_0 $ such that $ V'(c_0)=0 $. Since $ V'(c)=2Ac-B $, this value of $ c_0 $ is

$ c_0 = \frac{B}{2A} = \frac{1}{b-a}\int_a^b f(x)\ dx, $

the average value of $ f(x) $ on the interval $ [a,b] $. To complete the argument, we must show that this value of $ c $ falls in the interval between $ m $ and $ M $. But this is easy because

$ m \le f(x) \le M $

on $ [a,b] $ implies that

$ \int_a^b m\ dx \le \int_a^b f(x)\ dx \le \int_a^b M\ dx, $

and so

$ m(b-a) \le \int_a^b f(x)\ dx \le M(b-a), $

and dividing by $ (b-a) $ yields

$ m\le c_0\le M. $

The proof is complete.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood