Revision as of 08:15, 1 September 2011 by Bell (Talk | contribs)

We want to calculate

$ \int_0^\pi \sin x\ dx $

three days before we learn the Fundamental Theorem of Calculus, so our only tool is the limit of a Riemann sum.

So

$ \int_0^\pi \sin x\ dx\approx \sum_{n=1}^N \sin(n\pi/N)(\pi/N) $

when $ N $ is large.

Recall Euler's identity,

$ e^{i\theta}=\cos\theta + i\sin\theta. $

Hence, that Riemann sum $ R $ is the imaginary part of

$ (\pi/N)\sum_{n=1}^N e^{in\pi/N}. $

But

$ e^{in\pi/N}=\left(e^{i\pi/N}\right)^n, $

so $ R $ is just the imaginary part of a geometric sum.

The formula

$ 1+r+r^2+\dots+r^N = \frac{1-r^{N+1}}{1-r} $

lets us calculate that $ R $ is the imaginary part of

$ \frac{1-\left(e^{i\pi/N}\right)^{N+1}}{1-e^{i\pi/N}}. $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva