Line 29: Line 29:
 
<math>1+r+r^2+\dots+r^N = \frac{1-r^{N+1}}{1-r}</math>
 
<math>1+r+r^2+\dots+r^N = \frac{1-r^{N+1}}{1-r}</math>
  
lets us calculate that <math>R</math> is the imaginary part of
+
lets us calculate that <math>R</math> is <math>\pi/N</math> times the imaginary part of
  
 
<math>\frac{1-\left(e^{i\pi/N}\right)^{N+1}}{1-e^{i\pi/N}}.</math>
 
<math>\frac{1-\left(e^{i\pi/N}\right)^{N+1}}{1-e^{i\pi/N}}.</math>
 +
 +
Now
 +
 +
<math>\left(e^{i\pi/N}\right)^{N+1}= e^{i\pi + i\pi/N}=
 +
e^{i\pi}e^{i\pi/N}=-e^{i\pi/N}</math>
 +
 +
since
 +
 +
<math>e^{i\pi}=\cos\pi+i\sin\pi=-1+0i=-1.</math>
 +
 +
Hence, we obtain that the Riemann sum is equal to the
 +
imaginary part of
 +
 +
<math>\frac{\pi}{N}\frac{1+e^{i\pi/N}}{1-e^{i\pi/N}}.</math>

Revision as of 08:20, 1 September 2011

We want to calculate

$ \int_0^\pi \sin x\ dx $

three days before we learn the Fundamental Theorem of Calculus, so our only tool is the limit of a Riemann sum.

So

$ \int_0^\pi \sin x\ dx\approx \sum_{n=1}^N \sin(n\pi/N)(\pi/N) $

when $ N $ is large.

Recall Euler's identity,

$ e^{i\theta}=\cos\theta + i\sin\theta. $

Hence, that Riemann sum $ R $ is the imaginary part of

$ (\pi/N)\sum_{n=1}^N e^{in\pi/N}. $

But

$ e^{in\pi/N}=\left(e^{i\pi/N}\right)^n, $

so $ R $ is just the imaginary part of a geometric sum.

The formula

$ 1+r+r^2+\dots+r^N = \frac{1-r^{N+1}}{1-r} $

lets us calculate that $ R $ is $ \pi/N $ times the imaginary part of

$ \frac{1-\left(e^{i\pi/N}\right)^{N+1}}{1-e^{i\pi/N}}. $

Now

$ \left(e^{i\pi/N}\right)^{N+1}= e^{i\pi + i\pi/N}= e^{i\pi}e^{i\pi/N}=-e^{i\pi/N} $

since

$ e^{i\pi}=\cos\pi+i\sin\pi=-1+0i=-1. $

Hence, we obtain that the Riemann sum is equal to the imaginary part of

$ \frac{\pi}{N}\frac{1+e^{i\pi/N}}{1-e^{i\pi/N}}. $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva