Revision as of 21:29, 12 February 2009 by Norlow (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Functions

$ \sin{t}=\operatorname{sign}\,{x} $
\sin{t}=\operatorname{sign}\,{x}

Derivatives

$ \frac{dy}{dx}=\ddot{x}-\dot{y}, \partial{x} = 3\partial{y_1} $
\frac{dy}{dx}=\ddot{x}-\dot{y}, \partial{x} = 3\partial{y_1}

Modular arithmetic

$ 8 \equiv 3 \pmod{5} $
8 \equiv 3 \pmod{5}

Logic

$ (\lnot q) \and (p \Rightarrow q) \Rightarrow \lnot p $
(\lnot q) \and (p \Rightarrow q) \Rightarrow \lnot p

Operators

$ 1.4 \le \sqrt{2} \le 1.5 $
1.4 \le \sqrt{2} \le 1.5

Fractions

$ \frac{2}{5}=.4, \tfrac{10}{7} < \sqrt[3]{3} $
\frac{2}{5}=.4, \tfrac{10}{7} < \sqrt[3]{3}

Binomial

$ \binom{n}{k}=b_1, \tbinom{5}{2}=10 $
\binom{n}{k}=b_1, \tbinom{5}{2}=10

Matrix

$ \begin{bmatrix} 0 & 1 & 2 \\ i & \pi & \phi \end{bmatrix} $
\begin{bmatrix} 0 & 1 & 2 \\ i & \pi & \phi \end{bmatrix}

Integral

$ \int\limits_{1}^{3}{e^x}\,dx=\iint\limits_R{xy^2}\,dx\,dy $
\int\limits_{1}^{3}{e^x}\,dx=\iint\limits_R{xy^2}\,dx\,dy

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett