Line 20: Line 20:
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| <math> x[n] \ </math>  
 
| <math> x[n] \ </math>  
| <math>\longrightarrow</math>
+
| <math>\longrightarrow</math>  
 
| <math> \mathcal{X}(\omega) \ </math>
 
| <math> \mathcal{X}(\omega) \ </math>
 
|-
 
|-
Line 62: Line 62:
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| <math>x[n] \ </math>  
 
| <math>x[n] \ </math>  
| <math>\longrightarrow</math>
+
| <math>\longrightarrow</math>  
 
| <math> \mathcal{X}(\omega) \ </math>
 
| <math> \mathcal{X}(\omega) \ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | multiplication property
+
| align="right" style="padding-right: 1em;" | multiplication property  
 
| <math>x[n]y[n] \ </math>  
 
| <math>x[n]y[n] \ </math>  
 
|  
 
|  
Line 90: Line 90:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | Linearity
+
| align="right" style="padding-right: 1em;" | Linearity  
| <math>ax[n]+by[n]</math>
+
| <span class="texhtml">''a''''x''[''n''] + ''b''''y''[''n'']</span>  
 
|  
 
|  
| <math>aX(\omega)+bY(\omega)</math>
+
| <span class="texhtml">''a''''X''(ω) + ''b''''Y''(ω)</span>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | Time Shifting
+
| align="right" style="padding-right: 1em;" | Time Shifting  
| <math>x[n-n_0]</math>
+
| <span class="texhtml">''x''[''n'' − ''n''<sub>0</sub>]</span>  
 
|  
 
|  
 
| <math>e^{-j\omega n_0}X(\omega)</math>
 
| <math>e^{-j\omega n_0}X(\omega)</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | Frequency Shifting
+
| align="right" style="padding-right: 1em;" | Frequency Shifting  
| <math>e^{j\omega_0 n}x[n]</math>
+
| <math>e^{j\omega_0 n}x[n]</math>  
 
|  
 
|  
| <math>X(\omega-\omega_0)</math>
+
| <span class="texhtml">''X''(ω − ω<sub>0</sub>)</span>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | Conjugation
+
| align="right" style="padding-right: 1em;" | Conjugation  
| <math>x^{*}[n]</math>
+
| <span class="texhtml">''x''<sup> * </sup>[''n'']</span>  
 
|  
 
|  
| <math>X^{*}(-\omega)</math>
+
| <span class="texhtml">''X''<sup> * </sup>( − ω)</span>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | Time Expansion
+
| align="right" style="padding-right: 1em;" | Time Expansion  
| <math>x_(k) [n]=\left\{\begin{array}{ll}x[n/k], &  \text{ if n = multiple of k},\\ 0, & \text{else.}\end{array} \right.</math>
+
| <math>x_(k) [n]=\left\{\begin{array}{ll}x[n/k], &  \text{ if n = multiple of k},\\ 0, & \text{else.}\end{array} \right.</math>  
 
|  
 
|  
| <math>X(k\omega)</math>
+
| <span class="texhtml">''X''(''k''ω)</span>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | Differentiating in Time
+
| align="right" style="padding-right: 1em;" | Differentiating in Time  
| <math>x[n]-x[n-1]</math>
+
| <span class="texhtml">''x''[''n''] − ''x''[''n'' − 1]</span>  
 
|  
 
|  
| <math>(1-e^{-j\omega})X(\omega)</math>
+
| <span class="texhtml">(1 − ''e''<sup> − ''j''ω</sup>)''X''(ω)</span>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | Accumulation
+
| align="right" style="padding-right: 1em;" | Accumulation  
| <math>\sum^{n}_{k=-\infty} x[k]</math>
+
| <math>\sum^{n}_{k=-\infty} x[k]</math>  
 
|  
 
|  
| <math>\frac{1}{1-e^{-j\omega}X(\omega)</math>
+
| '''<math>\frac{1}{1-e^{-j\omega}}X(\omega)</math>'''
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | Symmetry
+
| align="right" style="padding-right: 1em;" | Symmetry  
| x[n] real and even
+
| x[n] real and even  
 
|  
 
|  
| <math>X(\omega)</math>&nbsp;real and even
+
| <span class="texhtml">''X''(ω)</span>&nbsp;real and even
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| x[n] real and odd
+
| x[n] real and odd  
 
|  
 
|  
| <math>X(\omega)</math>&nbsp;purely imaginary and odd
+
| <span class="texhtml">''X''(ω)</span>&nbsp;purely imaginary and odd
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  

Revision as of 13:13, 10 April 2011

Discrete-time Fourier Transform Pairs and Properties
DT Fourier transform and its Inverse
DT Fourier Transform $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $
Inverse DT Fourier Transform $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $
DT Fourier Transform Pairs
$ x[n] \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) \ $
DTFT of a complex exponential $ e^{jw_0n} \ $ $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
(info) DTFT of a rectangular window $ w[n]= \ $ add formula here
$ a^{n} u[n], |a|<1 \ $ $ \frac{1}{1-ae^{-j\omega}} \ $
$ (n+1)a^{n} u[n], |a|<1 \ $ $ \frac{1}{(1-ae^{-j\omega})^2} \ $
$ \sin\left(\omega _0 n\right) u[n] \ $ $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $
DT Fourier Transform Properties
$ x[n] \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) \ $
multiplication property $ x[n]y[n] \ $ $ \frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x[n]*y[n] \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x[-n] $ $ \ X(-\omega) $
Differentiation in frequency $ \ nx[n] $ $ \ j\frac{d}{d\omega}X(\omega) $
Linearity a'x[n] + b'y[n] a'X(ω) + b'Y(ω)
Time Shifting x[nn0] $ e^{-j\omega n_0}X(\omega) $
Frequency Shifting $ e^{j\omega_0 n}x[n] $ X(ω − ω0)
Conjugation x * [n] X * ( − ω)
Time Expansion $ x_(k) [n]=\left\{\begin{array}{ll}x[n/k], & \text{ if n = multiple of k},\\ 0, & \text{else.}\end{array} \right. $ X(kω)
Differentiating in Time x[n] − x[n − 1] (1 − ejω)X(ω)
Accumulation $ \sum^{n}_{k=-\infty} x[k] $ $ \frac{1}{1-e^{-j\omega}}X(\omega) $
Symmetry x[n] real and even X(ω) real and even
x[n] real and odd X(ω) purely imaginary and odd
Other DT Fourier Transform Properties
Parseval's relation $ \frac {1}{N} \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett